PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New aspects on the fractional Euler-Lagrange equation with non-singular kernels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we presented some notes in utilizing the fractional integral counterparts of the fractional derivatives with non-singular kernels on the action-like integral in Lagrangian mechanics. Considering a fractional integral, it may suggest that a dissipative term on the resulting fractional Euler-Lagrange equation can be obtained due to the imposed kernel. However, in the case of nonsingular kernel operators, different aspects of the fractional action-like integral were observed, and corresponding (fractionally-modified) Euler-Lagrange were derived, which imposes new insights on the dynamical system under the fractional regime.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Physics, Mindanao State University - Main Campus, 9700 Marawi City, Philippines
Bibliografia
  • [1] Atangana, A., & Alqahtani, R.T. (2016). Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation. Advances in Difference Equations, 2016(1), 1-13.
  • [2] Dokuyucu, M.A., Celik, E., Bulut, H., & Baskonus, H.M. (2018). Cancer treatment model with the Caputo-Fabrizio fractional derivative. The European Physical Journal Plus, 133(3), 92.
  • [3] Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408.
  • [4] Algahtani, O.J.J. (2016). Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model. Chaos, Solitons and Fractals, 89, 552-559.
  • [5] Atangana, A. (2018). Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Physica A: Statistical Mechanics and its Applications, 505, 688-706.
  • [6] Atangana, A., & Gómez-Aguilar, J.F. (2018). Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. The European Physical Journal Plus, 133(4), 166.
  • [7] Qureshi, S., Rangaig, N.A., & Baleanu, D. (2019). New numerical aspects of Caputo-Fabrizio fractional derivative operator. Mathematics, 7(4), 374.
  • [8] Atangana, A., & Gómez-Aguilar, J.F. (2018). Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. The European Physical Journal Plus, 133(4), 166.
  • [9] Rangaig, N.A., & Convicto, V.C. (2019). On fractional modelling of dye removal using fractional derivative with non-singular kernel. Journal of King Saud University-Science, 31(4), 525-527.
  • [10] Rangaig, N. (2018). Finite difference approximation for Caputo-Fabrizio time fractional derivative on non-uniform mesh and some applications. Physics Journal, 1, 255-263.
  • [11] Riewe, F. (1997). Mechanics with fractional derivatives. Physical Review E, 55(3), 3581.
  • [12] Agrawal, O.P. (2010). Generalized variational problems and Euler-Lagrange equations. Computers & Mathematics with Applications, 59(5), 1852-1864.
  • [13] Tarasov, V.E., & Zaslavsky, G.M. (2006). Nonholonomic constraints with fractional derivatives. Journal of Physics A: Mathematical and General, 39(31), 9797.
  • [14] Li, L., & Luo, S.K. (2013). Fractional generalized Hamiltonian mechanics. Acta Mechanica, 224(8), 1757-1771.
  • [15] Baleanu, D., Jajarmi, A., & Asad, J.H. (2019). Classical and fractional aspects of two coupled pendulums. ID: 209946116.
  • [16] Stachowiak, T., & Okada, T. (2006). A numerical analysis of chaos in the double pendulum. Chaos, Solitons & Fractals, 29(2), 417-422.
  • [17] Rangaig, N.A., Pido, A.A.G., Pada-Dulpina, C.T. (2020). On the fractional-order dynamics of a double pendulum with a forcing constraint using the nonsingular fractional derivative approach. Journal of Applied Mathematics and Computational Mechanics, In Press.
  • [18] Almeida, R., Tavares, D., & Torres, D.F. (2019). The Calculus of Variations. In The Variable-Order Fractional Calculus of Variations. Cham: Springer, 21-32.
  • [19] Almeida, R., & Torres, D.F. (2011). Necessary and suffcient conditions for the fractional calculus of variations with Caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 16(3), 1490-1500.
  • [20] Barrios, M., & Reyero, G. (2020). An Euler-Lagrange equation only depending on derivatives of Caputo for fractional variational problems with classical derivatives. Statistics, Optimization & Information Computing.
  • [21] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentation and Application, 1(2), 1-13.
  • [22] Lazo, M.J., & Torres, D.F. (2016). Variational calculus with conformable fractional derivatives. IEEE/CAA Journal of Automatica Sinica, 4(2), 340-352.
  • [23] Losada, J., & Nieto, J.J. (2015). Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentation and Application, 1(2), 87-92.
  • [24] G´omez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Reyes-Reyes, J., & Adam-Medina, M. (2016). Modeling diffusive transport with a fractional derivative without singular kernel. Physica A: Statistical Mechanics and its Applications, 447, 467-481.
  • [25] Baleanu, D., & Muslih, S.I. (2019). Fractional Lagrangian and Hamiltonian mechanics with memory. Applications in Physics, 23.
  • [26] Mora, L.F.M. (2019). Explaining retrocausality phenomena in quantum mechanics using a modified variational principle. arXiv preprint arXiv:1907.09688.
  • [27] He, J.H., & Ain, Q.T. (2020). New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle. Thermal Science, (00), 65-65
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef2c4fee-2f03-4ece-908f-d6eccd14c737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.