PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exosome-hydrogels loaded with metal-organic framework improve skin aging by inhibiting oxidative stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solvothermal reactions of Ba(NO3)2 with 1,3,5-benzenetricarboxylic acid gave rise to a new coordination polymer of [Ba6(BTC)4(H2O)9]}n (1 H3BTC = benzenetricarboxylic acid). The complex 1 was characterized soundly by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (EA), single-crystal X-ray diffraction (SCXRD), and thermogravimetric analysis (TGA). The framework of 1 has high thermal stability and shows intense luminescence at room temperature. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) have good biocompatibility, based on the chemical synthesis method, the HA/CMCS hydrogel was prepared. With exosomes as drug models, we further synthesized novel exosome-loaded metal gel particles and evaluated their effects on oxidative stress in human dermal fibroblasts.
Słowa kluczowe
Rocznik
Strony
42--47
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
autor
  • Plastic Surgery Department of Medical Beauty Center, The First Dongguan Affi liated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
  • Plastic Surgery Department of Medical Beauty Center, The First Dongguan Affi liated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
autor
  • Plastic Surgery Department of Medical Beauty Center, The First Dongguan Affi liated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
  • Plastic Surgery Department of Medical Beauty Center, The First Dongguan Affi liated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
autor
  • Plastic Surgery Department of Medical Beauty Center, The First Dongguan Affi liated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
Bibliografia
  • 1. Noonin, C. & Thongboonkerd, V. (2021). Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics, 11, 4436–4451. DOI: 10.7150/thno.54004.
  • 2. Yang, B., Chen, Y. & Shi, J. (2019). Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Adv. Mater. 31, e1802896. DOI: 10.1002/adma.201802896.
  • 3. Kimball, J.S., Johnson, J.P. & Carlson, D.A. (2021). Oxidative Stress and Osteoporosis. J. Bone Joint Surg. Am. 103, 1451–1461. DOI: 10.2106/JBJS.20.00989.
  • 4. Wu, Z.F. & Huang, X.Y. (2018). A mechanoresponsive fluorescent Mg-Zn bimetallic MOF with luminescent sensing properties. ChemistrySelect, 3, 4884–4888. DOI: 10.1002/slct.201800580.
  • 5. Chen, Y.M., Zou, S.X., Tang, Y.M. & Hu, H.L. (2019). Two heterometallic coordination polymers based on Sr(II) ion and dicarboxylate ligand. Polyhedron, 159, 18–23. DOI: 10.1016/j.poly.2018.11.011.
  • 6. Wu, Z.F., Gong, L.K. & Huang, X.Y. (2017). A Mg-CP with in situ encapsulated photochromic guest as sensitive fluorescence sensor for Fe3+/Cr3+ Ions and nitro-explosives. Inorg. Chem. 56, 7397–7403. DOI: 10.1021/acs.inorgchem.7b00505.
  • 7. Feng, Y.Q., Zhong, Z.G., Chen, S.Y., Liu, K.C. & Meng, Z.H. (2023). Improved Catalytic Performance toward Selective Oxidation of Benzyl Alcohols Originated from New Open-Framework Copper Molybdovanadate with a Unique V/Mo Ratio. Chem. Eur. J. 29, e202302051. DOI: 10.1002/chem.202302051.
  • 8. Ji, W.J., Liu, G.F., Wang, B.Q., Lu, W.B. & Zhai, Q.G. (2020). Design of a heterometallic Zn/Ca-MOF decorated with alkoxy groups on the pore surface exhibiting high fluorescence sensing performance for Fe3+ and Cr2O72−. Cryst. Eng.Comm. 22, 4710–4715. DOI: 10.1039/D0CE00457J.
  • 9. Lei, N., Wang, H., Fan, L. & Chen, X. (2024). Highly luminescent soft aggregates and films assembled by amphiphilic polyoxometalate complex in a polymerizable aprotic ionic liquid, J. Photoch. Photobio. A, 448, 115290. DOI: 10.1016/j.jphotochem.2023.115290.
  • 10. Liu, L., Ran, Y., Gao, M., Zhao, X. & Mu, Y. (2021). Effect of solvent/auxiliary ligand on the structures of Cd(II) coordination polymers based on ligand 5-(2-benzothiazolyl) isophthalic acid. Polyhedron, 199, 115103. DOI: 10.1016/j.poly.2021.115103.
  • 11. Lei, N., Li, W., Zhao, D., Li, W., Liu, X., Liu, L., Yin, J., Muddassir, M., Wen, R. & Fan, L. (2024). A Bifunctional Luminescence Sensor for Biomarkers Detection in Serum and Urine Based on Chemorobust Nickel(II) Metal-organic Framework, Spectrochim. Acta A, 306, 123585. DOI: 10.1016/j.saa.2023.123585.
  • 12. He, J., Zhang, Y., Pan, Q., Yu, J., Ding, H. & Xu, R. (2006). Three metal-organic frameworks prepared from mixed solvents of DMF and Hac. Micropor. Mesopor. Mater. 90, 145–152. DOI: 10.1016/j.micromeso.2005.11.049.
  • 13. Lian, T.T., Chen, S.M., Wang, F. & Zhang, J. (2013). Metal-organic framework architecture with polyhedron-in-polyhedron and further polyhedral assembly. Cryst. Eng. Comm. 15, 1036–1038. DOI: 10.1039/C2CE26611C.
  • 14. Ozer, D., Oztas, N.A., Köse, D.A. & Sahin, O. (2018). Fabrication and characterization of magnesium and calcium trimesate complexes via ion-exchange and one-pot self-assembly reaction. J. Mol. Struct. 1156, 353–359. DOI: 10.1016/j.molstruc.2017.11.128.
  • 15. Ma, K.R., Zhu, Y.L., Yin, Q.F., Hu, H.Y. & Ma, F. (2010). Structure and characterisation of a novel 3-D Ba(II)–MOF cased on the {Ba4O7} core. J. Chem. Res. 34, 705–709. DOI: 10.3184/030823410X12857507693391.
  • 16. Li, W., Li, W., Liu, X., Zhao, D., Liu, L., Yin, J., Li, X., Zhang, G. & Fan, L. (2023). Two Chemorobust Cobalt(II) Organic Frameworks as High Sensitivity and Selectivity Sensors for Efficient Detection of 3-Nitrotyrosine Biomarker in Serum. Cryst. Growth Des. 23, 7716–7724. DOI: 10.1021/acs.cgd.3c00478.
  • 17. Cao, K.L., Xia, Y., Wang, G.X. & Feng, Y.L. (2015). A robust luminescent Ba (II) metal–organic framework based on pyridine carboxylate ligand for sensing of small molecules. Inorg. Chem. Commun. 53, 42–45. DOI: 10.1016/j.inoche.2015.01.021.
  • 18. Xin, X.H., Lu, W., Lu, J., Xu, J.G., Wang, S.H., Zheng, F.K. & Guo, G.C. (2018). A luminescent barium-based metal-organic framework: Synthesis, structure and efficient detection of 4-nitrobenzoic acid. Inorg. Chem. Commun. 97, 129–133. DOI: 10.1016/j.inoche.2018.09.029.
  • 19. Chai, Q., Jiao, Y. & Yu, X. (2017). Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels, 3, 6. DOI: 10.3390/gels3010006.
  • 20. Wei, L., Lin, J., Cai, C., Fang, Z. & Fu, W. (2011). Drug-carrier/hydrogel scaffold for controlled growth of cells. Eur. J. Pharm. Biopharm. 78, 346–354. DOI: 10.1016/j.ejpb.2011.01.015.
  • 21. Chiani, E., Beaucamp, A., Hamzeh, Y., Azadfallah, M., Thanusha, A.V. & Collins, M.N. (2023). Synthesis and characterization of gelatin/lignin hydrogels as quick release drug carriers for ribavirin. Int. J. Biol. Macromol. 224, 1196–1205. DOI: 10.1016/j.ijbiomac.2022.10.205.
  • 22. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R. & Donnelly, R.F. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater. 9, 13. DOI: 10.3390/jfb9010013.
  • 23. Liao, J. & Huang, H. (2020). Review on magnetic natural polymer constructed hydrogels as vehicles for drug delivery. Biomacromolecules, 21, 2574–2594. DOI: 10.1021/acs.biomac.0c00566.
  • 24. Yang, J., Chen, Y., Zhao, L., Feng, Z., Peng, K., Wei, A., Wang, Y., Tong, Z. & Cheng, B. (2020). Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos. Part B: Eng. 197, 108139. DOI: 10.1016/j.compositesb.2020.108139.
  • 25. Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 71, 3–8. DOI: 10.1107/S2053229614024218.
  • 26. Zhang, X., Huang, Y.Y., Lin, Q.P., Zhang, J. & Yao, Y.G. (2013). Using alkaline-earth metal ions to tune structural variations of 1,3,5-benzenetricarboxylate coordination polymers. Dalton Trans., 42, 2294–2301. DOI: 10.1039/C2DT31536J.
  • 27. Zhang, X., Huang, Y.Y., Zhang, M.J., Zhang, J. & Yao, Y.G. (2012). A series of Ca(II) or Ba(II) inorganic-organic hybrid frameworks based on aromatic polycarboxylate ligands with the inorganic M-O-M (M = Ca, Ba) connectivity from 1D to 3D. Cryst. Growth & Des., 12, 3231–3238. DOI: 10.1021/cg3003756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef271355-9744-4f11-ad7a-b96fb7a2e1f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.