PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Dry-Low Emission Gas Turbine Fuel System using First Principle Data-Driven Method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Achieving reliable power generation from Dry Low Emission gas turbines together with low CO2 and NOx discharge is a great challenge, as the rigorous control strategy is susceptible to frequent trips. Therefore, it is crucial to establish a dynamic model of the turbine (such as the one commonly attributed to Rowen) to ascertain the stability of the system. However, the major distinctive fuel system design in the DLE gas turbine is not constructed in the well-established model. With this issue in mind, this paper proposes a modelling approach to the DLE gas turbine fuel system which consists of integrating the main and pilot gas fuel valve into Rowen’s model, using the First Principle Data-Driven (FPDD) method. First, the structure of the fuel system is determined and generated in system identification. Subsequently, the validated valve models are integrated into Rowen’s model as the actual setup of the DLE gas turbine system. Ultimately, the core of this modelling approach is fuel system integration based on the FPDD method to accurately represent the actual signals of the pilot and main gas fuel valves, gas fuel flow and average turbine temperature. Then, the actual signals are used to validate the whole structure of the model using MAE and RMSE analysis. The results demonstrate the high accuracy of the DLE gas turbine model representation for future utilization in fault identification and prediction study.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
Bibliografia
  • 1. Kwon, H.M., Moon, S.W., Kim, T.S., Kang, D.W., Sohn, J.L., and Lee, J. (2019) A study on 65 % potential efficiency of the gas turbine combined cycle. Journal of Mechanical Science and Technology, 33 (9), 4535–4543.
  • 2. Huitenga, H., and Norster, E.R. (2014) Development Approach to the Dry Low Emission Combustion System of MAN Diesel and Turbo Gas Turbines. Volume 4A: Combustion Fuels and Emissions.
  • 3. Suman, A., Casari, N., Fabbri, E., Pinelli, M., Mare, L. di, and Montomoli, F. (2018) Gas Turbine Fouling Tests: Review Critical Analysis, and Particle Impact Behavior Map. Journal of Engineering for Gas Turbines and Power, 141 (3).
  • 4. Rigo-Mariani, R., Zhang, C., Romagnoli, A., Kraft, M., Ling, K.V., and Maciejowski, J.M. (2019) A Combined Cycle Gas Turbine Model for Heat and Power Dispatch Subject to Grid Constraints. IEEE Transactions on Sustainable Energy, 1–1.
  • 5. Hazel, T., Peck, G., and Mattsson, H. (2014) Industrial Power Systems Using Dry Low Emission Turbines. IEEE Transactions on Industry Applications, 50 (6), 4369–4378.
  • 6. Nemitallah, M.A., Rashwan, S.S., Mansir, I.B., Abdelhafez, A.A., and Habib, M.A. (2018) Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines. Energy & Fuels, 32 (2), 979–1004.
  • 7. Abdelhafez, A., Rashwan, S.S., Nemitallah, M.A., and Habib, M.A. (2018) Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. Applied Energy, 215, 63–74.
  • 8. Serbin, S.I., Matveev, I.B., and Mostipanenko, G.B. (2011) Investigations of the Working Process in a “Lean-Burn” Gas Turbine Combustor With Plasma Assistance. IEEE Transactions on Plasma Science, 39 (12), 3331–3335.
  • 9. Massey, J.C., Chen, Z.X., and Swaminathan, N. (2019) Lean Flame Root Dynamics in a Gas Turbine Model Combustor. Combustion Science and Technology, 191 (5-6), 1019–1042.
  • 10. Zettervall, N., Worth, N.A., Mazur, M., Dawson, J.R., and Fureby, C. (2019) Large eddy simulation of CH4-air and C2H4-air combustion in a model annular gas turbine combustor. Proceedings of the Combustion Institute, 37 (4), 5223–5231.
  • 11. Aldi, N., Casari, N., Morini, M., Pinelli, M., Spina, P.R., and Suman, A. (2018) Gas Turbine Fouling: A Comparison Among 100 Heavy-Duty Frames. Journal of Engineering for Gas Turbines and Power, 141 (3).
  • 12. Fentaye, A.D., Gilani, S.I.U.-H., Baheta, A.T., and Li, Y.-G. (2018) Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 233 (6), 786–802.
  • 13. Tsoutsanis, E., and Meskin, N. (2019) Dynamic performance simulation and control of gas turbines used for hybrid gas/wind energy applications. Applied Thermal Engineering, 147, 122–142.
  • 14. Iqbal, M.M.M., Sarumathi, S., Jothi, K.R., and Brindadevi, A. (2018) Model order reduction of heavy duty gas turbine power plants with field test parameters. International Transactions on Electrical Energy Systems, 29 (2), e2703.
  • 15. Mohammadian, P.K., and Saidi, M.H. (2019) Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic. Energy, 183, 1295–1313.
  • 16. Rowen, W.I. (1983) Simplified Mathematical Representations of Heavy-Duty Gas Turbines. Journal of Engineering for Power, 105 (4), 865–869.
  • 17. Chaibakhsh, A., and Amirkhani, S. (2018) A simulation model for transient behaviour of heavy-duty gas turbines. Applied Thermal Engineering, 132, 115–127.
  • 18. Rahman, M., Zaccaria, V., Zhao, X., and Kyprianidis, K. (2018) Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization. Processes, 6 (11), 216.
  • 19. Kang, D.W., and Kim, T.S. (2018) Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation. Applied Energy, 212, 1345–1359.
  • 20. Montazeri-Gh, M., Fashandi, S.A.M., and Abyaneh, S. (2018) Real-time simulation test-bed for an industrial gas turbine engine’s controller. Mechanics & Industry, 19 (3), 311.
  • 21. Liu, Z., and Karimi, I.A. (2018) Simulating combined cycle gas turbine power plants in Aspen HYSYS. Energy Conversion and Management, 171, 1213–1225.
  • 22. Pires, T.S., Cruz, M.E., Colaço, M.J., and Alves, M.A.C. (2018) Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction. Energy, 149, 341–353.
  • 23. Cáceres, I.E., Montañés, R.M., and Nord, L.O. (2018) Flexible operation of combined cycle gas turbine power plants with supplementary firing. Journal of Power Technologies, 98 (2), 188–197.
  • 24. Yee, S.K., Milanovic, J.V., and Hughes, F.M. (2008) Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies. IEEE Transactions on Power Systems, 23 (1), 108–118.
  • 25. Gomez, F.J., Chaves, M.A., Vanfretti, L., and Olsen, S.H. (2018) Multi-Domain Semantic Information and Physical Behavior Modeling of Power Systems and Gas Turbines Expanding the Common Information Model. IEEE Access, 6, 72663–72674.
  • 26. Huang, D., Chen, J.-wei, Zhou, D.-ji, Zhang, H.sheng, and Su, M. (2018) Simulation and analysis of humid air turbine cycle based on aeroderivative threeshaft gas turbine. Journal of Central South University, 25 (3), 662–670.
  • 27. Tarik, M.H.M., Omar, M., Abdullah, M.F., and Ibrahim, R. (2017) Modelling of dry low emission gas turbine using black-box approach. TENCON 2017 2017 IEEE Region 10 Conference.
  • 28. Pondini, M., Signorini, A., Colla, V., and Barsali, S. (2019) Analysis of a simplified Steam Turbine governor model for power system stability studies. Energy Procedia, 158, 2928–2933.
  • 29. Kim, D.-J., Moon, Y.-H., Choi, B.-S., Ryu, H.S., and Nam, H.-K. (2018) Impact of a Heavy-Duty Gas Turbine Operating Under Temperature Control on System Stability. IEEE Transactions on Power Systems, 33 (4), 4543–4552.
  • 30. Balamurugan, S., Janarthanan, N., and Chandrakala, K.R.M.V. (2016) Small and large signal modeling of heavy duty gas turbine plant for load frequency control. International Journal of Electrical Power & Energy Systems, 79, 84–88.
  • 31. Kumar, S.S., Xavier, R.J., and Balamurugan, S. (2016) Small signal modelling of gas turbine plant for load frequency control. 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE).
  • 32. Eslami, M., Shayesteh, M.R., and Pourahmadi, M. (2018) Optimal Design of PID-Based Low-Pass Filter for Gas Turbine Using Intelligent Method. IEEE Access, 6, 15335–15345.
  • 33. Khamseh, S.A., and Fatehi, A. (2017) Performance monitoring of heavy duty gas turbines based on Bayesian and Dempster-Shafer theory. 2017 International Conference on Electrical and Information Technologies (ICEIT).
  • 34. Meegahapola, L., and Flynn, D. (2015) Characterization of Gas Turbine Lean Blowout During Frequency Excursions in Power Networks. IEEE Transactions on Power Systems, 30 (4), 1877–1887.
  • 35. Omar, M., Tarik, M.H.M., Ibrahim, R., and Abdullah, M.F. (2017) Suitability study on using rowen's model for dry-low emission gas turbine operational performance. TENCON 2017 - 2017 IEEE Region 10 Conference.
  • 36. Czop, P., Kost, G., Sławik, D., and Wszołek, G. (2011) Formulation and identification of firstprinciple data-driven models. Journal of Achievements in materials and manufacturing Engineering, 44 (2), 179–186.
  • 37. Czop, P., Sławik, D., and Wszołek, G. (2011) Demonstration of First-Principle Data-Driven models using numerical case studies. Journal of Achievements in Materials and Manufacturing Engineering, 45 (2), 170–177.
  • 38. Winter, R., Montanari, F., Noé, F., and Clevert, D.-A. (2019) Learning continuous and datadriven molecular descriptors by translating equivalent chemical representations. Chemical science, 10 (6), 1692–1701.
  • 39. Rowen, W.I. (1992) Simplified mathematical representations of single shaft gas turbines in mechanical drive service. ASME 1992 international gas turbine and aeroengine congress and exposition.
  • 40. Ayed, A.H., Kusterer, K., Funke, H.H.-W., Keinz, J., and Bohn, D. (2017) CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities. Propulsion and Power Research, 6 (1), 15–24.
  • 41. Funke, H.H.W., Beckmann, N., Keinz, J., and Abanteriba, S. (2018) Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion. Journal of Engineering for Gas Turbines and Power, 140 (8).
  • 42. Hermann, J., Greifenstein, M., Boehm, B., and Dreizler, A. (2019) Experimental investigation of global combustion characteristics in an effusion cooled single sector model gas turbine combustor. Flow, Turbulence and Combustion, 102 (4), 1025–1052.
  • 43. Hackney, R., Sadasivuni, S.K., Rogerson, J.W., and Bulat, G. (2016) Predictive Emissions Monitoring System for Small Siemens Dry Low Emissions Combustors: Validation and Application. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition.
  • 44. Tavakoli, M.R.B., Vahidi, B., and Gawlik, W. (2009) An educational guide to extract the parameters of heavy duty gas turbines model in dynamic studies based on operational data. IEEE Transactions on power systems, 24 (3), 1366–1374.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef25cf30-03cb-46c8-b320-05a922d2e21d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.