Identyfikatory
Warianty tytułu
Methods for the determination of food dyes
Języki publikacji
Abstrakty
Food dyes are chemical substances that were developed to enhance the appearance of food by giving it artificial color. People have added colorings to food for centuries, but the first artificial food colorings were created in 1856 from coal tar. Over the years, hundreds of artificial food dyes have been developed, but a majority of them have since been found to be toxic. There is only a handful of artificial dyes that are still used in food. Food manufacturers often prefer artificial food dyes over natural food colorings, such as beta carotene and beet extract, because they produce a more vibrant color [1]. However, there is quite a bit of controversy regarding the safety of artificial food dyes. All of the artificial dyes that are currently used in food have gone through testing for toxicity in animal studies. Regulatory agencies, like the US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA), have concluded that the dyes do not pose significant health risks. Not everyone agrees with that conclusion. Interestingly, some food dyes are deemed safe in one country, but banned from human consumption in another, making it extremely confusing to assess their safety [2]. Undesirable effects of azo dyes used for coloring food products led to the development of very sensitive and selective analytical methods successfully used for their determination in various food matrices. Many different methods have been employed for the determination of synthetic dyes in food and beverages including thin layer chromatography and capillary electrophoresis [3]. However, these methods can be time consuming and may not be applicable for the simultaneous analysis of many dyes. Conventional HPLC methods have been employed for the analysis of synthetic colorants and while useful, these methods require long analysis times and large amounts of expensive solvents [4, 5]. Preparation of the test sample involves the use of various techniques such as membrane filtration due to the complexity of food products. Therefore, the development of simple, selective extraction methods together with the combination of chromatographic and spectrophotometric techniques are of great importance [6]. One of the most difficult stages of the analysis is the appropriate selection of the method for the determination of food colors. In the case of spectrophotometric methods, the main advantage is the low cost of the determination, however, the lack of specificity of the absorption spectrum usually makes it difficult to apply this method in the case of a mixture of different absorbing dyes due to the overlap of the spectra. The CE (Capillary Electrophoresis) analysis is faster and more economical compared to conventional electrophoresis and chromatography. The production of cheap capillaries and the development of on-line detection systems contributed to the development of modern capillary electrophoresis. Capillary electrophoresis has a number of types of separation. Ultimately, it is impossible to determine the one particular appropriate specific method for the determination of food dyes due to their diverse structure and chemical composition [4, 7].
Wydawca
Czasopismo
Rocznik
Tom
Strony
667--683
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- Katedra Analizy i Oceny Jakości Żywności, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin
autor
- Katedra Analizy i Oceny Jakości Żywności, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin
Bibliografia
- [1] L.E. Arnold, N. Lofthouse, E. Hurt, Neurotherapeutics, 2012, 9(3), 599.
- [2] J.P. Harley, C.G. Matthews, P. Eichman, Pediatrics, 1978, 62(6), 975.
- [3] S.L.J. Burgess, J.R. Stochelski, M.A. Kuczek, Clin. Pediatr., 2014, 3, 156.
- [4] T. Zou, P. He, A. Yasen, Z. Li. Food Chem., 2013, 138, 1742.
- [5] L.H. Ahlstrom, C. Sparr, E.E. Bjorklund. TrAC, 2005, 24, 49.
- [6] B. Bateman, J.O. Warner, E. Hutchinson, T. Dean, P. Rowlandson, C. Gant, J. Grundy, C. Fitzgerald, J. Stevenson, Arch. Dis. Child., 2004, 89(6), 506.
- [7] F. Soponar, A. Cătălin Moţ, C. Sârbu, J. Chromatogr A., 2008, 1188, 295.
- [8] A. Rutkowski, Przem. Spoż., 2003, 3(57), 2.
- [9] L.H. Ahlström, C.S. Eskilsson, E. Björklund, Tr AC, 2005, 24, 49.
- [10] K. Kozłowska, M. Jeruszka-Bielak, L. Piwowarczyk, A. Brzozowska, Bromat. Chem. Toksykol., 2012, 4, 1157.
- [11] M. Ziarno, D. Zaręba, Forum Mleczarskie Biznes., 2012, 3, 24.
- [12] K. Yamjala, M.S. Nainar., N.R. Ramisetti, Food Chem., 2016, 92, 813.
- [13] D. McCann, A. Barrett, A. Cooper,D. Crumpler, L. Dalen, K. Grimshaw, E. Kitchin, K. Lok, L. Porteous, E. Prince, Lancet, 2007, 370(9598), 1560.
- [14] F. Rafii, J.D. Hall, C.E. Cerniglia, Food Chem. Toxicol., 1997, 35, 8.
- [15] C.O. Thompson, V.C. Trenerry, J. Chromatogr. A, 1995, 704, 195.
- [16] H. Wu, J.B. Guo, L.M. Du, H. Tian, C.X. Hao, Z.F. Wang, J.Y. Wang, Food Chem., 2013, 141, 182.
- [17] F. Gosetti, P. Frascarolo, E. Mazzucco, V. Gianotti, M. Bottaro, M.C. Gennaro, J. Chromatogr. A, 2008, 1202, 58.
- [18] K.S. Minioti, C.F. Sakellariou, N.S. Thomaidis, Anal. Chim. Acta., 2007, 583, 103.
- [19] X.H. Chen, Y.G. Zhao, H.Y. Shen, L.X. Zhou, S.D. Pan, M.C. Jin, J. Chromatogr. A, 2014, 1346, 123.
- [20] M. González, M. Gallego, M. Valcárcel, J. Agr. Food Chem., 2003, 51, 2121.
- [21] B.P. Harp, E. Miranda-Bermudez, J.N. Barrows, J. Agr. Food Chem., 2013, 61, 3726.
- [22] B. Tang, C. Xi, Y. Zou, G. Wang, X. Li, L. Zhang, D. Chen, J. Zhang, J. Chromatogr. B, 2014, 960, 87.
- [23] M. Soylak, Y.E. Unsal, M. Tuzen, Food Chem. Toxicol., 2011, 49, 1183.
- [24] K. Farhadi, R. Maleki, N.M. Nezhad, N. Samadi, Spectrosc Lett., 2010, 43, 101.
- [25] M. Tuzen, M. Soylak, J. Hazard. Mater., 2006, 129, 266.
- [26] N. Yoshioka, K. Ichihashi, Talanta, 2008, 74, 1408.
- [27] T. Zou, P. He, A. Yasen, Z. Li, Food Chem. 2013, 138, 1742.
- [28] J. Kirschbaum, C. Krause, H. Brückner, Eur. Food Res. Technol., 2006, 222, 572.
- [29] M. Ma, X. Luo, B. Chen, S. Su, S. Yao, J. Chromatogr. A, 2006, 1103, 170.
- [30] H. Sun, N. Sun, H. Li, J. Zhang, Y. Yang, Food Anal. Method., 2013, 6, 1291.
- [31] Y. Shen, X. Zhang, W. Prinyawiwatkul, Z. Xu, Food Chem. 2014, 157, 553.
- [32] A.D. Kaur, U. Gupta, G.U. Journal of Science, 2012, 25, 579.
- [33] M. Hajimahmoodi, M.R. Oveisi, N. Sadeghi, B. Jannat, E. Nilfroush, Food Anal. Method., 2008, 1, 214.683
- [34] M.H. Sorouraddin, A. Rostami, M. Saadati, Food Chem., 2011, 127, 308.
- [35] F. Turak, M.U. Ozgur, AOAC, 2013, 96, 1377.
- [36] D.E. Alipanahpour, M. Ghaedi, A. Asfaram, Ultrason Sonochem., 2017, 34, 27.
- [37] K. Rovina, S. Shafiquzzaman, S.M. Shaarani, Crit. Rev. Anal. Chem., 2017, 47, 4, 309.
- [38] V.Z. Atayan, E.G. Sumina, S.N. Shtykov, J. Anal. Chem., 2003, 58, 3.
- [39] J.A. Steele, JAOAC, 1984, 58, 540.
- [40] F.I. Andrade, M.I.F. Guedes, I.G.P. Vieira, F.N.P. Mendes, P.A.S. Rodrigues, C.S.C. Maia, M.M.M. Ávila, L. Matos Ribeiro, Food Chem., 2014, 157, 193.
- [41] Y. Xu, The Chemical Educator, 1996, 1(2), 11.
- [42] H. Qu, S.W. Linder, T.K. Mudalige, Anal. Bioanal. Chem., 2017, 409, 979.
- [43] H.Y. Huang, C.L. Chuang, C.W. Chiu, M.C. Chung, Electrophoresis, 2005, 26, 867.
- [44] L. Del Giovine, A.P. Bocca, Food Control, 2003, 14, 131.
- [45] N.A. Zatar, Int. J. Food Sci. Tech., 2007, 5, 220.
- [46] M.C. Gennaro, E. Gioannini, S. Angelino, R. Aigotti, D. Giacosa, J. Chromatogr. A., 1997, 767, 87.
- [47] M.M. Jurcovan, E. Diacu, Revista De Chimie, 2014, 65, 137
- [48] S. Bonan, G. Fedrizzi, S. Menotta, C. Elisabetta, Dyes and Pigments, 2013, 99, 36.
- [49] M.A. Prado, L F.V. Boas, M.R. Bronze, H.T Godoy, J. Chromatogr A., 2006, 1136, 231.
- [50] S. Yıldırım, A. Yaşar, Food Anal. Method., 2018, 11, 1581.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef25ae43-737b-4b52-9d26-ed94da5b5bc8