PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cayley-Hamilton theorem for Drazin inverse matrix and standard inverse matrices

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classical Cayley-Hamilton theorem is extended to Drazin inverse matrices and to standard inverse matrices. It is shown that knowing the characteristic polynomial of the singular matrix or nonsingular matrix, it is possible to write the analog Cayley-Hamilton equations for Drazin inverse matrix and for standard inverse matrices.
Twórcy
autor
  • Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Białystok
Bibliografia
  • [1] F.R. Chang and C.M. Chan, “The generalized Cayley-Hamilton theorem for standard pencils”, Systems and Control Letters, 18 (3), 179‒182 (1992).
  • [2] F.R. Gantmacher, The Theory of Matrices, Chelsea Pub. Comp., London, 1959.
  • [3] T. Kaczorek, “An extension of the Cayley-Hamilton theorem for non-square block matrices and computation of the left and right inverses of matrices”, Bull. Pol. Ac.: Tech., 43 (1), 49‒56 (1995).
  • [4] T. Kaczorek, “An extension of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices”, Bull. Pol. Ac.: Tech., 43 (1), 39‒48 (1995).
  • [5] T. Kaczorek, “An extension of the Cayley-Hamilton theorem for a standard pair of block matrices”, Int. J. Appl. Math. Comput. Sci., 8 (3), 511‒516 (1998).
  • [6] T. Kaczorek, “An Extension of the Cayley-Hamilton theorem for nonlinear time-varying systems”, Int. J. Appl. Math. Comput. Sci., 16 (1), 141‒145 (2006).
  • [7] T. Kaczorek, “Cayley-Hamilton theorem for fractional linear systems”, Proc. Conf. RRNR 2016.
  • [8] T. Kaczorek, “Extension of the Cayley-Hamilton theorem for continuous-time systems with delays”, Int. J. Appl. Math. Comput. Sci., 15 (2), 231‒234 (2005).
  • [9] T. Kaczorek, “Extensions of Cayley-Hamilton theorem for 2D continuous-discrete linear systems”, Int. J. Appl. Math. Comput. Sci., 4 (4), 507‒515 (1994).
  • [10] T. Kaczorek, “Extensions of the Cayley-Hamilton theorem to fractional descriptor linear systems”, Proc. Conf. MMAR 2016.
  • [11] T. Kaczorek, “Generalization of the Cayley-Hamilton theorem for non-square matrices”, Proc. Inter. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, 77‒83 (1995).
  • [12] T. Kaczorek, “Generalizations of Cayley-Hamilton theorem for n-D polynomial matrices”, IEEE Trans. Autom. Contr., 50 (5), 671‒674 (2005).
  • [13] T. Kaczorek, “Generalizations of the Cayley-Hamilton theorem with applications”, Archives of Electrical Engineering, LVI (1), 3‒41 (2007).
  • [14] T. Kaczorek, Linear Control Systems, vol. I, II, Research Studies Press, 1992/1993.
  • [15] T. Kaczorek, “Positive 2D hybrid linear systems”, Bull. Pol. Ac.: Tech., 55 (4), 351‒358 (2007).
  • [16] T. Kaczorek, “Positive discrete-time linear Lyapunov systems”, Journal of Automation, Mobile Robotics and Intelligent Systems, 2 (3), 13‒19 (2008).
  • [17] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2012.
  • [18] T. Kaczorek, “Drazin inverse matrix method for fractional descriptor continuous-time linear systems”, Bull. Pol. Ac.: Tech., 62 (3), 409‒412 (2014).
  • [19] T. Kaczorek, “Drazin inverse matrix method for fractional descriptor discrete-time linear systems”, Bull. Pol. Ac.: Tech., 64 (2), 395‒399 (2016).
  • [20] T. Kaczorek, Vectors and Matrices in Automation and Electrotechnics, WNT, Warsaw, 1998, [in Polish].
  • [21] T. Kaczorek and K. Borawski, „Stability of continuous-time and discrete-time linear systems with inverse state matrices”, Measurement Automation Monitoring, 62 (4), (2016), (to be published).
  • [22] T. Kaczorek and P. Przyborowski, “Positive continuous-time linear time-varying Lyapunov systems”, Proc. of XVI Intern. Conf. on Systems Science, 4‒6 September, Wrocław-Poland, 140‒149 (2007).
  • [23] P. Lancaster, Theory of Matrices, Acad. Press, New York, 1969.
  • [24] F.L. Lewis, “Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil [sE-A]”, Proc. 22nd IEEE Conf. Decision Control, 1282‒1288 (1982).
  • [25] F.L. Lewis, “Further remarks on the Cayley-Hamilton theorem and Fadeev’s method for the matrix pencil [sE-A]”, IEEE Trans. Automat. Control, 31 (7), 869‒870 (1986).
  • [26] B.G. Mertizios and M.A. Christodoulous, “On the generalized Cayley-Hamilton theorem”, IEEE Trans. Automat. Control, 31 (1), 156‒157 (1986).
  • [27] N.M. Smart and S. Barnett, “The algebra of matrices in n-dimensional systems”, IMA J. Math. Control Inform., 6, 121‒133 (1989).
  • [28] N.J. Theodoru, “M-dimensional Cayley-Hamilton theorem”, IEEE Trans. Automat. Control, AC-34 (5), 563‒565 (1989).
  • [29] J. Victoria, “A block Cayley-Hamilton theorem”, Bull. Math. Sco. Sci. Math. Roum., 26 (1), 93‒97 (1982).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef1f8098-10bc-4634-a742-6a7fc2f46629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.