PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Start-up, modelling and simulation of the anammox process in a membrane bioreactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are certain well-known methods of diminishing concentrations of nitrogen compounds, but they are ineffective in case of nitrogen-rich wastewater with a low content of biodegradable carbon. Partial nitritation followed by anaerobic ammonium oxidation (Anammox) process appear to be an excellent alternative for traditional nitrification and denitrification. This paper presents the feasibility of successful start-up of Anammox process in a laboratory-scale membrane bioreactor (MBR). It was shown that the combination of membrane technology and Anammox process allowed to create a new highly efficient and compact system for nitrogen removal. It was possible to achieve average nitrogen removal efficiency equal to 76.7 +/-8.3%. It was shown that the start-up period of 6 months was needed to obtain high nitrogen removal efficiency. The applied biochemical model of the Anammox process was based on the state-of-the-art Activated Sludge Model No.1 (ASM 1) which was modified for accounting activity of autotrophs (nitrite-oxidising bacteria and nitrateoxidising bacteria) and anammox bacteria. In order to increase the predictive power of the simulation selected parameters of the model were adjusted during model calibration. Readjustment of the model parameters based on the critically evaluated data of the reactor resulted in a satisfactory match between the model predictions and the actual observations.
Rocznik
Strony
639--650
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • The Silesian University of Technology, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
  • The Silesian University of Technology, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
  • The Silesian University of Technology, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
  • The Silesian University of Technology, Environmental Biotechnology Department, ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • 1. Anthonisen A.C., Loehr R.C., Prakasam T.B.S., Srinath E.G., 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed., 48, 835–852.
  • 2. Cema G., Wiszniowski J., Żabczyński S., Zabłocka-Godlewska E., Raszka A., Surmacz-Górska J., 2007. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in rotating biological contactor (RBC). Water Sci. Technol., 55, 35–42. DOI: 10.2166/wst.2007.239.
  • 3. Daims H., Stoecker K., Wagner M., 2005. Fluorescence in situ hybridization for the detection of prokaryotes, In: Osborn A.M., Smith C.J. (Eds.), Advanced Methods in Molecular Microbial Ecology. Bios-Garland, Abingdon, UK., 213–239.
  • 4. Dapena-Mora A., Van Hulle S.W.H., Campos J.L., Mendez R., Vanrolleghem P.A. and Jetten M., 2004. Enrichment of Anammox biomass from municipal activated sludge: experimental and modeling results. J. Biotechnol., 79, 1421–1428. DOI: 10.1002/jctb.1148.
  • 5. De Clippeleir H., Yan X., Verstraete W., Vlaeminck S.E., 2011. OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence time. Proceedings of the IWA/WEF Nutrient Recovery and Management 2011, 9 – 12 January 2011, Miami, Florida, 1264–1274.
  • 6. Fernández I., Vázquez-Padín J.R., Mosquera-Corral A., Campos J.L., Méndez R., 2008. Biofilm and granular systems to improve Anammox biomass retention. Biochem. Eng. J., 42, 308–313. DOI: 10.1016/j.bej.2008.07.011.
  • 7. Fux C., 2003. Biological nitrogen elimination of ammonium-rich sludge digester liquids. PhD Thesis, Swiss Federal Institute of Technology Zurich. DISS. ETH NO. 15018.
  • 8. Hao X., Heijnen J.J., van Loosdrecht M.C.M., 2002b. Sensitivity analysis of a biofilm model describing a onestage completely autotrophic nitrogen removal (CANON) process. Biotechnol. Bioeng., 77, 266–277. DOI: 10.1102/bit.10105.
  • 9. Hao X., Heijnen J.J., Van Loosdrecht MC.M., 2002a. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Water Res., 36, 4839–4849. DOI: 10.1016/S0043-1354(02)00219-1.
  • 10. Hao X.-D. and van Loosdrecht MC.M., 2004. Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Sci. Technol., 49(11-12), 83–90.
  • 11. G. Cema, A. Sochacki, J. Kubiatowicz, P. Gutwiński, J. Surmacz-Górska, Chem. Process Eng., 2012, 33 (4), 639-650
  • 12. Henze M., Grady C.P.L. Jr., Gujer W., Marais G.V.R., Matsuo T., 1987. Activated sludge model No. 1. IAWQ Scientific and Technical Report No. 1, London, UK.
  • 13. Henze M., Gujer W., Mino T., van Loosdrecht M., 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing, London, UK.
  • 14. Koch G., Engli K., van der Meer J.R. and Siegrist H., 2000. Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci. Technol., 41, 191–198.
  • 15. Li X., Zen G., Rosenwinkel K.H., Kunst S., Weichgrebe D., Cornelius A., Yang Q., 2004. Start up of deammonification process in one single SBR system. Water Sci. Technol., 50, 1–8.
  • 16. Makinia J., 2010. Mathematical modeling and computer simulation of activated sludge systems. IWA Publishing, London, UK.
  • 17. Makinia J., Swinarski M., Dobiegala E. (2002). Experiences with computer simulation at two large wastewater treatment plants in northern Poland. Water Sci. Technol. 45, 209–218.
  • 18. Mikosz J., 2009. Efect of biomass characterization in komputer simulation of BNR processes. Proceedings of a Polish-Swedish-Ukrainian Seminar, Stockholm, Sweden, September 23–25. 2009.
  • 19. Mulder A., 2003. The quest for sustainable nitrogen removal technologies. Water Sci. Technol., 48, 67–75.
  • 20. Sochacki A., Knodel J., Geissen S.-U., Zambarda V., Miksch K., Bertanza G., 2009. Modelling and simulation of a municipal WWTP with limited operational data. Proceedings of a Polish-Swedish-Ukrainian Seminar, Stockholm, Sweden, September 23–25, 2009.
  • 21. Strous M., Heijnen J., Kuenen J. G., Jetten M.S.M., 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol., 50, 589–596. DOI: 10.1007/s002530051340.
  • 22. Trigo C., Campos J.L., Garrido J.M., Mendez R., 2006. Start-up of the Anammox process in a membrane bioreactor. J. Biotechnol., 126, 475–487. DOI: 10.1016/j.jbiotec.2006.05.008.
  • 23. van de Graaf A.A. , de Bruijn P., Robertson L.A., Jetten M.S.M., Kuenen J.G., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology, 142, 2187–2196. DOI: 10.1099/13500872-142-8-2187.
  • 24. Van Hulle S., 2005. Modelling, simulation and optimisation of autotrophic nitrogen removal processes. PhD Thesis, Ghent University, Belgium.
  • 25. Vanhooren H, Meirlaen J, Amerlinck Y, Claeys F, Vangheluwe H and Vanrolleghem P.A., 2003. WEST: Modelling biological wastewater treatment. J. Hydroinform., 5, 27–50.
  • 26. Volcke E.I.P., 2006. Modelling, analysis and control of partial nitritation in a SHARON reactor. PhD thesis, Ghent University, Belgium, 300.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef18d5ff-b266-4ceb-8c98-952f3a662280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.