PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Utility of Chromobacterium violaceum SUK1a, an indigenous bacterial isolate for the bioremediation of Cr(VI)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential of an indigenous bacterial strain, Chromobacterium violaceum SUK1a, isolated from surface water samples collected from Sukinda Valley in Odisha, India, has been evaluated for the first time for the bioremediation of toxic hexavalent chromium (Cr(VI)) ions. The isolate was assessed for its Cr(VI) biosorption efficiency and the various parameters affecting the biosorption process were evaluated. A maximum Cr(VI) biosorption of about 50% was obtained, and the residual chromium was in the form of less toxic Cr(III). The Gibbs free energy of biosorption was determined to be -26.3 kJ/mol, suggestive of a chemisorption process. Additionally, the Cr(VI) biosorption by the isolate followed pseudo second order kinetics. FTIR spectral studies indicated that the surface functional groups present on the bacterial isolate such as, carboxyl, hydroxyl, amino, and phosphate groups were involved in the complexation of chromium ions with the bacterial cells. X-ray photoelectron spectroscopic studies on Cr(VI) interacted bacterial cells revealed an additional peak corresponding to Cr(III) in the Cr(2p) spectra. The surface charge of the bacterial cells subsequent to interaction with Cr(VI) were less negative compared to the pristine cells, which further substantiated the bioreduction of Cr(VI) to Cr(III). The bioremediation mechanism of Cr(VI) by the bacterial isolate is delineated to be governed by both biosorption and bioreduction processes under metabolism independent conditions. The results obtained indicate that the isolate can be a promising candidate for Cr(VI) bioremediation applications.
Rocznik
Strony
1266--1281
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Indian Institute of Science
autor
  • Center for Earth Sciences, Indian Institute of Science
  • Department of Materials Engineering, Indian Institute of Science
autor
  • University Paris Diderot, Institute de Physique du Globe de Paris
autor
  • GEOPS - Géosciences Paris Sud, Université Paris-Sud
  • Department of Materials Engineering, Indian Institute of Science
Bibliografia
  • AGRAWAL, A., KUMAR, V., PANDEY, B.D., 2006. Remediation options for the treatment of electroplating and leather tanning effluent containing chromium-A review. Mineral Processing & Extractive Metall. Rev. 27, 99-130.
  • AL-OTHMAN, Z.A., ALI, R., NAUSHAD, MU., 2012. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption, kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 184, 238247.
  • ANONYMOUS, 2017. Indian Minerals Yearbook 2017 (Part III: Minerals Reviews) Chromite, 56th Edition, Indian Bureau of Mines, Nagpur.
  • BEVERIDGE, T.J., 1960. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43, 147-71.
  • BHATT, R., SREEDHAR, B., PADMAJA, P., 2015. Adsorption of chromium from aqueous solutions using crosslinked chitosan-diethylenetriaminepentaacetic acid. Int. J. Biol. Macromol. 74, 458-466.
  • CAREPO, M.S.P., AZEVEDO, J.S.N., PORTO, J.I.R., BENTES-SOUSA, A.R., BATISTA, J.S., SILVA, A.L.C., SCHNEIDER, M.P.C., 2004. Identification of Chromobacterium violaceum genes with potential biotechnological applications in environmental detoxification. Genet. Mol. Res.3, 181-194.
  • DAMBIES, L., GUIMON, C., YIACOUMI, S., GUIBAL, E., 2001. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids Surf. A 177, 203-214.
  • DAS, A.P., MISHRA, S., 2008. Hexavalent chromium (VI): Environment pollutant and health hazard. J. Environ. Res. Develop. 2, 386-392.
  • DAS, S., MISHRA, J., DAS, S.K., PANDEY, S., RAO, D.S., CHAKRABORTY, A., SUDARSHAN, M., DAS, N., THATOI, H., 2014. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96, 112-121.
  • DEY, S., PAUL, A.K., 2010. Occurrence and evaluation of Chromium reducing bacteria in seepage water from chromite mine quarries of Orissa, India. J. Water resource and Protection 2, 380-388.
  • DIVYASREE, P., BRAUN, J.J., SUBRAMANIAN, S., 2014. Comparatively studies on the bioremediation of hexavalent and trivalent chromium using Citrobacter freundii: Part I-Effect of parameters controlling biosorption. Int. J. Environ. Res. 8, 1127-1134.
  • FARAMARZI, M.A. STAGARS, M., PENSINI, E., KREBS, W., BRANDL, H., 2004. Metal solubilization from metalcontaining solid materials by cyanogenic Chromobacterium violaceum. J. Biotechnol. 113, 321–326.
  • GAD, S.C., 1989.Acute and chronic systemic chromium toxicity. Sci. Total Environ. 86, 149-157.
  • GADD, G.M., 2009. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84, 13-28.
  • GILES, C.H., MACEVAN, T.H., NAKHWA, S.N., SMITH, D. 1960. Studies in adsorption: Part XI, a system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3973-3993.
  • GOHARSHADI, E.K., MELLO, I., FREITAS, L.R., RESENDE, R., SILVA, R.A.R., 2014. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: Kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 12, 2153-2160.
  • HASE, S., RIETSCHEL, E.T., 1977. The chemical structure of the lipid A component of lipopolysacharides from Chromobacterium violaceum NCTC 9694. Eur. J. Biochem. 75, 23-34.
  • HAWLEY, E.L., DEEB, R.A., KAVANAUGH, M.C., JACOBS, J.R.G., 2005. Treatment technologies for Chromium(VI). In Chromium(VI) Handbook ed. Guertin, J., Avakian, C.P. and Jacobs J.A. pp. 273-308. Boca Raton: CRC press.
  • HONG, Y., BROWN, D.G., 2008. Electrostatic behavior of the charge-regulated bacterial cell surface. Langmuir 24, 50035009.
  • LACERDA, F.S.A., DUARTE, E.D.N., FERNANDE, M.F.A., 2016. Microbiology for environmental conservation: A systematic review of bioremediation of heavy metals by Chromobacterium violaceum, Gaia Scientia 10, 408-423.
  • JACOBS, J.A., TESTA, S.M., 2005. Overview of Cr(VI) in the environment: Background and history. In Chromium(VI) Handbook ed. Guertin, J., Avakian, C.P. and Jacobs J.A. pp. 273-308. Boca Raton: CRC press.
  • LANGMUIR, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.40, 13611403.
  • LANES, R.M., LEE, D.G., 1968. Chromic acid oxidation of alcohols-A simple experiment on reaction rates. J. Chem. Ed. 45, 269-271.
  • LESMANA, S.O., FEBRIANA, N., SOETAREDJO, F.E., SUNARSO, J., ISMADJI, S., 2009. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 44, 19-41.
  • LI, X., GAO, X., JIANG, J., 2015. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238-246.
  • LI, Y., LI, Q., FENGYING, Y., BAO, J., HU, Z., ZHU, W., ZHAO, Y., LIN, Z., DONG, Q., 2015. Chromium (VI) detoxification by oxidation and flocculation of exopolysaccharides from Arthrobacter sp. B4. Int. J. Biol. Macromol. 81, 235-240.
  • MACLENNAN, A.P., DAVIES, D.A.L., 1957. The isolation of D-glycero-D-galactoHeptose and other sugar components from the specific polysaccharide of Chromobacterium violaceum (BN). Biochem. J. 66, 562-567.
  • MCAULEY, A., OLATUNJI, A., 1977. Metal-ion oxidations in solution. Part XIX. Redox pathways in oxidation of pencillamine and glutathione by chromium(VI).Can. J. Chem. 55, 3335-3340.
  • MISHRA, D., LEE, Y.H., 2014. Microbial Leaching of Metals from Solid Industrial Wastes. J. Microbiol. 52, 1–7.
  • MISHRA, H., SAHU, H.B., 2013. Environmental scenario of chromite mining at Sukinda valley-A review. Int. J. Environ. Eng. Manag. 4, 287-292.
  • MOHAN, D. AND PITTMAN, C.U., 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. B137, 762-811.
  • OLIVEIRA, R.C., PALMIERI, C., GARCIA, O., 2011. Biosorption of metals: State of art, general features, and potential applications for environmental and technological processes. In Progress in Biomass and Bioenergy Production ed. Shaukat, S.S. pp. 151-176. Croatia: In Tech.
  • OWLAD, M., AROUA, M.K., DAUD, W.A.W., BAROUTIAN, S., 2009. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut. 200, 59-77.
  • PARK, D., LIM, S-R., YUN, Y-S., PARK, J.M., 2007. Reliable evidences that the removal of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70, 298-305.
  • PARKS, G.A., 1967. Aqueous surface chemistry of oxides and complex oxide minerals-Isoelectric point and zero point charge. In Equilibrium concepts in natural water systems ed. Stumm, W. pp. 121-160. Washington DC: American Chemical Society.
  • PRABHAKARAN, D.C., RIOTTE, J., SUBRAMANIAN, S., 2016. Bioremediation of hexavalent and trivalent chromium using Citrobacter freundii: A mechanistic study. Natural Resources & Engineering 1, 1-12.
  • PRABHAKARAN, D.C., SUBRAMANIAN, S., 2017. Studies on the bioremediation of chromium from aqueous solutions using C. paurometabolum. Trans. Indian Inst. Met. 70, 497–509.
  • PRIYA, K.S., ROJA, K., PRIYA, S., SIVASUBRAMANIAN, A., MUTHURAMAN, M.S., 2013. Detoxification and bioremediation of chromium (VI) from the tannery effluents.Int.J. Chem. Tech. Res. 5, 2177-2185.
  • SALTON, M.R.J., 1960. Studies of the bacterial cell wall VII.Monosaccharide constituents of the walls of Gram-negative bacteria.Biochim.Biophys.Acta 45, 364-371.
  • SAMUEL, J., PAUL, M.L., PULIMI, M., NIRMALA, M.J., CHANDRASEKARAN, N., MUKHERJEE, A., 2012. Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind. Eng. Chem. Res. 51, 3740-3749.
  • SEN, M., DASTIDAR, M.G., 2010. Chromium removal using various biosorbents. Iran J. Environ. Health Sci. Engg. 7, 182-190.
  • SILVA, I.S., SANTOS, E.C., MENEZES, C.R., FARIA, A.F., FRANSCISCON, E., GROSSMAN, M., 2009b. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia.Bioresour.Technol.100, 4669-4675.
  • VASCONCELOS, A.T.R et al., 2003. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. PNAS 100, 11660-11665.
  • VIJAYARAGHAVAN, K., YUN, Y-S., 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv.26, 266-291.
  • VOLESKY, B., 2003. Sorption and biosorption. Canada: BV Sorbex, Inc. WESTHEIMER, F.H., 1949. The mechanisms of chromic acid oxidations. Chem. Rev. 45, 419-451.
  • WESTHEIMER, F.H., 1949. The mechanisms of chromic acid oxidations. Chem. Rev. 45, 419-451.
  • WILLEY, J.M., SHERWOOD, L.M., WOOLVERTON, C.J., 2008.Prescott, Harley and Klein’s Microbiology. New York.: McGraw-Hill Companies Inc.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef16210c-b41c-40ee-b3bf-c293cfa113f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.