Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mass size distribution of five fractions of particulate matter inside most popular types of closed sports facilities before and after athlete training were compared. In all the facilities, the concentrations of particles were higher during the training than before it. Their values depended on the type of flooring and cubic capacity of the rooms. Particle mass size distribution importantly affects the particle deposition rate in the respiratory tract. The results of the work indicate the necessity of further investigating the relations between the physical properties of particles and the effects of inhaling them during training in various sports facilities.
Czasopismo
Rocznik
Tom
Strony
103--112
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
- The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
- The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Bibliografia
- [1] ABELSOHN A., STIEB D.M., Health effects of outdoor air pollution. Approach to counseling patients using the air quality health index, Can. Fam. Phys., 2011, 57, 881.
- [2] KI-HYUN K., EHSANUL K., SHAMIN K., A rewiew on the human health impact of airborne particulate matter, Environ. Int., 2015, 74, 136.
- [3] DE KOK T.M.C.M., DRIECE H.A.L., HOGERVORST J.G.F., BRIEDÉ J.J., Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies, Mutat. Res., 2006, 613, 103.
- [4] RAASCHOU-NIELSEN O., Particulate matter air pollution components and risk for lung cancer, Environ. Int., 2016, 87, 66.
- [5] CAKMAK S., DALES R., LEECH J., LIU L., The influence of air pollution on cardiovascular and pulmonary function and exercise capacity: Canadian Health Measures Survey (CHMS), Environ. Res., 2011, 111, 1309.
- [6] SRACIC M.K., Modeled regional airway deposition of inhaled particles in athletes at exertion, J. Aerosol Sci., 2016, 99, 54.
- [7] LIPPI G., GUIDI G.C., MAFFULLI N., Air pollution and sports performance in Beijing, Int. J. Sports Med., 2008, 29, 696.
- [8] RUNDELL K.W., CAVISTON R., Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects, J. Strength Cond. Res., 2008, 22, 2.
- [9] CUTRUFELLO P.T., SMOLIGA J.M., RUNDELL K.W., Small things make a big difference: particulate matter and exercise, Sports Med., 2012, 42, 1041.
- [10] PHALEN R.F., Inhalation studies: Foundations and techniques, Informa Healthcare, New York 2009.
- [11] WANG X.L., CHANCELLOR G., EVENSTAD J., FARNSWORTH J.E., HASE A., OLSON G.M., SREENATH A., AGARWAL J.K., A novel optical instrument for estimating size segregated aerosol mass concentration in real time, Aerosol Sci. Technol., 2009, 43, 939.
- [12] HINDS W.C., Aerosol technology. Properties, behavior, and measurement of airborne particles, 2nd Ed., Wiley, New York 1998.
- [13] NAG S., GUPTA A.K., MUKHOPADHYAY U.K., Size distribution of atmospheric aerosols in Kolkata, India and the assessment of pulmonary deposition of particle mass. Indoor Built. Environ., 2005, 14(5), 381.
- [14] CHENG K., GOEBES M.D., HILDEMANN L.M., Association of size-resolved airborne particles with foot traffic inside a carpeted hallway, Atmos. Environ., 2010, 44, 2062.
- [15] NASIR Z.A., COLBECK I., ZULFIQAR A., SHAKIL A., Indoor particulate matter in developing countries: A case study in Pakistan and potential intervention strategies, Environ. Res. Lett., 2013, 8, 1.
- [16] DIMITROULOPOULOU C., Ventilation in European dwellings: A review, Build. Environ., 2012, 47, 109.
- [17] WIDDER S.H., HASELBACH L., Relationship among concentrations of indoor air contaminants, their sources, and different mitigation strategies on indoor air quality, Sustainability, 2017, 9 (7), 1149.
- [18] ROGULA-KOZŁOWSKA W., KOZIELSKA B., MAJEWSKI G., KOCIESZEWSKA K., Submicron particle-bound polycyclic aromatic hydrocarbons in the Polish teaching rooms: concentrations, origin and health hazard, J. Environ. Sci., 2018, 64, 235.
- [19] ROGULA-KOZŁOWSKA W., Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content, Air Qual. Atm. Health, 2016, 9 (5), 533.
- [20] WIDZIEWICZ K., ROGULA-KOZŁOWSKA W., Urban environment as a factor modulating metals deposition in the respiratory track and associated cancer risk, Atm. Poll. Res., 2018, 9 (3), 399.
- [21] GUO M., LYU Y., XU T., YAO B., SONG W., LI M., YANG X., CHENG T., LI X., Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai, Environ. Poll., 2018, 234, 9.
- [22] ALVES C.A., CALVO A.I., CASTRO A., FRAILE R., EVTYUGINA M., BATE-EPEY E.F., Air quality in sports venues with distinct characteristics, Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 2013, 7, 298.
- [23] RAMOS C.A., WOLTERBEEK H.T., ALMEIDA S.M., Exposure to indoor air pollutants during physical activity in fitness centers, Build. Environ., 2014, 82, 349.
- [24] BEZEMER G., Particle deposition clearance from respiratory tract, Institute for Risk Assessment Sciences, Utrecht 2009.
- [25] WHO, Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia, Copenhagen 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef0af1e7-7ee6-4150-a1ca-9508042cb977