PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of cadmium on oxidative stress in Beta vulgaris

Identyfikatory
Warianty tytułu
PL
Wpływ kadmu na stres oksydacyjny u Beta vulgaris
Języki publikacji
EN
Abstrakty
EN
As a heavy metal, cadmium has strongly toxic effects on plants and can induce oxidative stress. It is absorbed by the roots and transported to the stems and leaves. The aim of the study was to evaluate the effect of various concentrations of cadmium on the metabolic activity of Beta vulgaris and assess the dependence of these processes on the content of metal in the plants. To demonstrate the effect of cadmium on metabolism, protein and photosynthetic pigment content, lipid peroxidation, and the activity of enzymes specific for oxidative stress in roots and shoots were measured. Seeds of B. vulgaris were treated with different concentrations of Cd supplied via a CdCl2 solution: 0 (control), 200, 300 and 400 mg/dm3. Results of the present study revealed increased GPOX activity as cadmium concentration rose, while SOD activity was stimulated by a low Cd concentration (200 mg/dm3) and reduced by high levels of Cd. Based on the present findings, it can be concluded that GPOX in B. vulgaris played a more important role in ROS scavenging than SOD did and was able to reduce the level of lipid peroxidation in plants. Cadmium, in the concentration range used, did not show any significant effect on protein or photosynthetic pigment content.
Słowa kluczowe
Rocznik
Strony
457--467
Opis fizyczny
Bibliogr. 43 poz., wykr., tab.
Twórcy
  • Independent Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 50
autor
  • Independent Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 50
autor
  • Independent Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 50
autor
  • Independent Chair of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 50
Bibliografia
  • [1] Rombel-Bryzek A, Rajfur M, Zhuk O. The impact of copper ions on oxidative stress in garden cress Lepidium sativum. Ecol Chem Eng S. 2017;24:627-636. DOI: 10.1515/eces-2017-0041.
  • [2] Zinicovscaia I, Rudi L, Valuta A, Cepot L, Vergel K, Frontasyeva MV, et al. Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S. 2016;23:559-569. DOI: 10.1515/eces-2016-0039.
  • [3] Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol. 2005;17:21-34. DOI: 10.1590/S1677-04202005000100003.
  • [4] ATSDR, Agency for Toxic Substance and Disease Registry, U.S. Toxicological Profile for Cadmium. Department of Health and Humans Services, Atlanta, Georgia, USA: Public Health Service, Centers for Disease Control;2005.
  • [5] Kumar R, Mishra RK, Mishra V, Qidwai A, Pandey A, Shukla SK, et al. Detoxification and tolerance of heavy metals in plants. In. Ahmad P, editor. Plant Metal Interaction. Chapter 13. USA: Elsevier Inc; 2016. DOI: 10.1016/B978-0-12-803158-2.00013-8.
  • [6] Galleo SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales MD. Unravelling cadmium toxicity and tolerance in plant: insight into regulatory mechanism. Environ Exp Bot. 2012;83:33-46. DOI: 10.1016/j.envexpbot.2012.04.006.
  • [7] Eutrópio FJ, Ramos AC, Da Silva Folli-Pereira W, De Aquino Portela N, Dos Santos JB, Da Conceição JM, et al. Heavy metal stress and molecular approaches in plants. In: Ahmad P, editor. Plant Metal Interact. 2016; Chapter 22. USA: Elsevier Inc; 2016. DOI: 10.1016/B978-0-12-803158-2.00022-9.
  • [8] Redjala T, Sterckeman T, Morel JL. Influence of plant cadmium content on root cadmium uptake. Proc Internat Plant Nutrition Colloquium XVI, 2009. https://escholarship.org/uc/item/5xw4q4pm.
  • [9] Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. Int J Phytoremediat. 2017;19:133-141. DOI: 10.1080/15226514.2016.1207598.
  • [10] Ching KH. Cadmium stress in rice plants: influence of essential elements. Crop Env Bioinformat. 2014;11:113-118.
  • [11] Gill SS, Khan NA, Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plan Sci. 2012;182:112-120. DOI: 10.1016/j.plantsci.2011.04.018.
  • [12] Lehotai N, Peto A, Bajkal S, Erdei L, Tari I, Kolbert Z. In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol. Plant. 2011;33:2199-2207. DOI 10.1007/s11738-011-0759-z.
  • [13] Moura DJ, Peres VF, Jacques RA, Saffi J. Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair. In: Gupta DK, Sandalio LM, editors. Metal Toxicity in Plants: Perception, Signaling and Remediation. Berlin Heidelberg: Springer Verlag; 2012. DOI: 10.1007/978-3-642-22081-4.
  • [14] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;12:909-930. DOI: 10.1016/j.plaphy.2010.08.016.
  • [15] Gagne F. Oxidative stress. In: Biochemical Ecotoxicology. Principles and Methods. First edition, Chapter 6. London: Elsevier Inc; 2014. DOI: 10.1016/C2012-0-07586-2.
  • [16] Zaharieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999;40:273-280.
  • [17] Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170-3175. http://www.jbc.org/content/247/10/3170.full.pdf.
  • [18] Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. DOI: 10.1016/0003-2697(76)90527-3.
  • [19] Lichtenthauer HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-382. DOI: 10.1016/0076-6879(87)48036-1.
  • [20] Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. DOI: 10.1016/0003-9861(68)90654-1.
  • [21] Ibrahim MM, Bafeel SO. Alteration of gene expression, superoxide anion radical and lipid peroxidation induces by lead toxicity in leaves of Lepidium sativum. J Anim Plant Sci. 2009;4:281-288.
  • [22] Rajfur M, Krems P, Kłos A, Kozłowski R, Jóźwiak MA, Kříž J, et al. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie Province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.
  • [23] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  • [24] Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci. 2017;8:1-19. DOI: 10.3389/fpls.2017.01867.
  • [25] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405-410. DOI: 10.1016/S1360-1385(02)02312-9.
  • [26] Cuypers A, Keunen E, Bohler S, Jozefczak M, Opdenakker K, Gielen H, et al. Cadmium and copper stress induce a cellular oxidative challenge leading to damage versus signaling. In: Gupta DK, Sandalio LM, editors. Metal Toxicity in Plants: Perception, Signaling and Remediation. Berlin Heidelberg: Springer; 2012. DOI: 10.1007/978-3-642-22081-4_4.
  • [27] Gajewska E, Skłodowska M, Słaba M, Mazur J. Effect of nickel on antioxidative enzyme activities proline and chlorophyll contents in wheat shoots. Biol Plantarum. 2006;50:653-659. DOI: 10.1007/s10535-006-0102-5.
  • [28] Lin A, Zhang X, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci. 2007;19:596-602. http://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=2007190514.
  • [29] Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma. 2010;239:31-38. DOI: 10.1007/s00709-009-0079-y.
  • [30] Ali B, Deng X, Hu X, Gill RA, Ali S, Wang S, et al. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. J Agr Sci Tech. 2015;17:63-74. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.872.1490&rep=rep1&type=pdf.
  • [31] Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, et al. Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot. 2016;104:61-68. DOI: 10.1016/j.sajb.2015.11.006.
  • [32] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annal Botany. 2003;91:179-194. DOI: 10.1093/aob/mcf118.
  • [33] Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, et al. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem. 2005;43:437-44. DOI: 10.1016/j.plaphy.2005.03.007.
  • [34] Wang Z, Zhang YX, Huang ZB, Huang L. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil. 2008;310:137-149. DOI: 10.1007/s11104-008-9641-1.
  • [35] Martins LL, Mourato MP, Cardoso AI, Pinto AP, Mota AM, De Lurdes S, et al. Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol Plant. 2011;33:1375-1383. DOI: 10.1007/s11738-010-0671-y.
  • [36] Kapoor D, Kaur S, Bhardwaj R. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. Biomed Res Int. 2014;726070. DOI: 10.1155/2014/726070.
  • [37] Markovska Y, Gorinova N, Nedkovska M, Miteva K. Cadmium-induced oxidative damage and antioxidant responses in Brassica juncea plants. Biol Plantarum. 2009;53:151-154.
  • [38] Lu Y, Li XR, He MZ, Wang ZN, Tan HJ. Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim. Sci Cold Arid Reg. 2010;2:436-444. DOI: 10.3724/SP.J.1226.2010.00436.
  • [39] Harris NS, Taylor GJ. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol. 2013;13:103-119. DOI: 10.1186/1471-2229-13-103.
  • [40] Macfie SM, Mahrami S, McGarvey BD. Differential accumulation of cadmium in near-isogenic lines of durum wheat: no role for phytochelatins. Physiol Mol Biol Plants. 2016;22:461-472. DOI: 10.1007/s12298-016-0383-x.
  • [41] Peško M, Kráľová K, Masarovičová E. Response of Hypericum perforatum plants to supply of cadmium compounds containing different forms of selenium. Ecol Chem Eng S. 2010;17:279-287. http://tchie.uni.opole.pl/ece_s/S17_3/S3_2010.pdf
  • [42] Zhuk O, Rombel-Bryzek A. Oddziaływanie kadmu i kwasu salicylowego na aktywność metaboliczną Lepidium sativum L. (Effect of cadmium and salicylic acid on metabolic activity in Lepidium sativum L.) Proc ECOpole. 2016;10:379-388. DOI: 10.2429/proc.2016.10(1)04.
  • [43] Seth CS, Kumar Chaturvedi P, Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf. 2008;71:76-85. DOI: 10.1016/j.ecoenv.2007.10.030.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef0a7280-93b0-4ad2-9783-b22341d7a9f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.