Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new formulation of vibrations of the axially loaded Euler-Bernoulli beam with quintic nonlinearity is investigated in the present study. The beam nonlinear natural frequency as a function of the initial amplitude is obtained. In this direction, modern powerful analytical methods namely He’s Max-Min Approach (MMA) and Amplitude-Frequency Formulation (AFF) are employed to approximate the frequency-amplitude relationship of the beam vibrations. Afterwards, it is clearly shown that the first term in the series expansions is sufficient to produce a highly accurate approximation of the nonlinear system. Finally, preciseness of the present analytical procedures is evaluated in contrast with numerical calculation methods.
Czasopismo
Rocznik
Tom
Strony
959--968
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
autor
- Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
autor
- National Iranian South Oil Company (Nisoc), Ahvaz, Iran
Bibliografia
- 1. Akhtyamov A.M., Il’gamov M.A., 2013, Flexural model for a notched beam: Direct and inverse problems, Journal of Applied Mechanics and Technical Physics, 54, 1, 132-141, DOI:10.1134/S0021894413010161
- 2. Andreaus U., Placidi L., Rega G., 2011, Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 10, 2444-2456, DOI:10.1177/0954406211414484
- 3. Arvin H., Bakhtiari-Nejad F., 2011, Non-linear modal analysis of a rotating beam, International Journal of Non-Linear Mechanics, 46, 877-897
- 4. Awrejcewicz J., Krysko A.V., Soldatov V., Krysko V.A., 2012, Analysis of the nonlinear dynamics of the Timoshenko flexible beams using wavelets, Journal of Computational and Nonlinear Dynamics, 7, 1, 011005
- 5. Baferani A.H., Saidi A.R., Jomehzadeh E., 2011, An exact solution for free vibration of thin functionally graded rectangular plates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 3, 526-536, DOI:10.1243/09544062JMES2171
- 6. Barari A., Kaliji H.D., Ghadami M., Domairry G., 2011, Non-linear vibration of Euler-Bernoulli beams, Latin American Journal of Solids and Structures, 8, 139-148
- 7. Campanile L.F., Jähne R., Hasse H., 2011, Exact analysis of the bending of wide beams by a modified elastica approach, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 11, 2759-2764, DOI: 10.1177/0954406211417753
- 8. Cha P.D., Rinker J.M., 2012, Enforcing nodes to suppress vibration along a harmonically forced damped Euler-Bernoulli beam, Journal of Vibration and Acoustics, 134, 5, 051010,DOI:10.1115/1.4006375
- 9. Evirgen, F., Özdemir N., 2011, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, Journal of Computational and Nonlinear Dynamics, 6, 2, 021003, DOI: 10.1115/1.4002393
- 10. Hammad B.K., Nayfeh A.H., Abdel-Rahman E.M., 2011, On the use of the subharmonic resonance as a method for filtration, Journal of Computational and Nonlinear Dynamics, 6, 4,041007, DOI: 10.1115/1.4003031
- 11. Hasanov A., 2011, Some new classes of inverse coefficient problems in non-linear mechanics and computational material science, International Journal of Non-Linear Mechanics, 46, 5, 667-684
- 12. He J.H., 2008a, An improved amplitude-frequency formulation for nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 9, 2, 211-212
- 13. He J.H., 2008b, Max-min approach to nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 9, 2, 207-210
- 14. He J.H., 2010, Hamiltonian approach to nonlinear oscillators, Physics Letters A, 374, 23, 2312-2314
- 15. He J.H., Shou D.H., 2007, Application of parameter-expanding method to strongly nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 121-124
- 16. Jang T.S., Baek H.S., Paik J.K., 2011, A new method for the non-linear deflection analysis of an infinite beam resting on a non-linear elastic foundation, International Journal of Non-Linear Mechanics, 46, 339-346
- 17. Khan Y., Akbarzade M., 2012, Dynamic analysis of nonlinear oscillator equation arising in double-sided driven clamped microbeam-based electromechanical resonator, Zeitschrift für Naturforschung, 67a, 435-440, DOI: 10.5560/ZNA.2012-0043
- 18. Khosrozadeh A., Hajabasi M.A., Fahham H.R., 2013, Analytical approximations to conservative oscillators with odd nonlinearity using the variational iteration method, Journal of Computational and Nonlinear Dynamics, 8, 014502, DOI: 10.1115/1.4006789
- 19. Krys’ko V.A., Koch M.I., Zhigalov M.V., Krys’ko A.V., 2012, Chaotic phase synchronization of vibrations of multilayer beam structures, Journal of Applied Mechanics and Technical Physics, 53, 3, 451-459, DOI: 10.1134/S0021894412030182
- 20. Kumar S., Kumar R., Sehgal R., 2012, Performance analysis of finite element and energy based analytical methods for modeling of PCLD treated beams, Journal of Vibration and Acoustics, 134, 3, 034501, DOI: 10.1115/1.4006232
- 21. Naderi A., Saidi A.R., 2011, Buckling analysis of functionally graded annular sector plates resting on elastic foundations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 2, 312-325
- 22. Ozturk B., 2011, Free vibration analysis of beam on elastic foundation by the variational iteration method, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 10, 1255-1262,DOI: 10.1515/IJNSNS.2009.10.10.1255
- 23. Rafieipour H., Lotfavar A., Mansoori M.H., 2012, New analytical approach to nonlinear behavior study of asymmetrically LCBs on nonlinear elastic foundation under steady axial and thermal loading, Latin American Journal of Solids and Structures, 9, 531-545
- 24. Sedighi H.M., Reza A., Zare J., 2011, Dynamic analysis of preload nonlinearity in nonlinear beam vibration, Journal of Vibroengineering, 13, 778-787
- 25. Sedighi H.M., Shirazi K.H., 2011, Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy, International Review of Mechanical Engineering, 5, 941-946
- 26. Sedighi H.M., Shirazi K.H., 2012, A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition, Journal of Computational and Nonlinear Dynamics, 7, 034502 DOI: 10.1115/1.4005924
- 27. Sedighi H.M., Shirazi K.H., 2013, Asymptotic approach for nonlinear vibrating beams with saturation type boundary condition, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, in press, DOI: 10.1177/0954406213475561
- 28. Sedighi H.M., Shirazi K.H., Noghrehabadi A., 2012a, Application of Recent Powerful Analytical Approaches on the Non-Linear Vibration of Cantilever Beams, International Journal of Nonlinear Sciences and Numerical Simulation, 13, 7/8, 487-494, DOI: 10.1515/ijnsns-2012-0030
- 29. Sedighi H.M., Shirazi K.H., Noghrehabadi A.R., Yildirim A., 2012b, Asymptotic investigation of buckled beam nonlinear vibration, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 36, M2, 107-116
- 30. Sedighi H.M., Shirazi K.H., Reza A., Zare J., 2012c, Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226, 10, 2474-2484, DOI: 10.1177/0954406211435196
- 31. Sedighi H.M., Shirazi K.H., Zare J., 2012d, An analytic solution of transversal oscillation of quintic nonlinear beam with homotopy analysis method, International Journal of Non-Linear Mechanics, 47, 777-784, DOI: 10.1016/j.ijnonlinmec.2012.04.008
- 32. Sedighi H.M., Shirazi K.H., Zare J., 2012e, Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He’s parameter expanding method, Latin American Journal of Solids and Structures, 9, 443-451
- 33. Shadloo M.S., Kimiaeifar A., Application of homotopy perturbation method to find an analytical solution for magneto hydrodynamic flows of viscoelastic fluids in converging/diverging channels, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225, 347-353
- 34. Yang Q.W., Chen Y.M., Liu J.K., Zhao W., 2012, A Modified Variational Iteration Method for Nonlinear Oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 13, DOI: 10.1515/ijnsns.2011.045
- 35. Yazdi M.K., Ahmadian H., Mirzabeigy A., Yildirim A., 2012, Dynamic analysis of vibrating systems with nonlinearities, Communications in Theoretical Physics, 57, 2, 183-187
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef077505-b362-4a43-bbbb-d9363a91c62a