PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric vehicle motor fault diagnosis using improved wavelet packet decomposition and particle swarm optimization algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study addresses the issue of diagnosing faults in electric vehicle motors and presents a method utilizing Improved Wavelet Packet Decomposition (IWPD) combined with particle swarm optimization (PSO). Initially, the analysis focuses on common demagnetization faults, inter turn short circuit faults, and eccentricity faults of permanent magnet synchronous motors. The proposed approach involves the application of IWPD for extracting signal feature vectors, incorporating the energy spectrum scale, and extracting the feature vectors of the signal using the energy spectrum scale. Subsequently, a binary particle swarm optimization algorithm is employed to formulate strategies for updating particle velocity and position. Further optimization of the binary particle swarm algorithm using chaos theory and the simulated annealing algorithm results in the development of a motor fault diagnosis model based on the enhanced particle swarm optimization algorithm. The results demonstrate that the chaotic simulated annealing algorithm achieves the highest accuracy and recall rates, at 0.96 and 0.92, respectively. The model exhibits the highest fault accuracy rates on both the test and training sets, exceeding 98.2%, with a minimal loss function of 0.0035. Following extraction of fault signal feature vectors, the optimal fitness reaches 97.4%. In summary, the model constructed in this study demonstrates effective application in detecting faults in electric vehicle motors, holding significant implications for the advancement of the electric vehicle industry.
Rocznik
Strony
481--498
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Xinxiang Vocational and Technical College, Xinxiang 453000, China
autor
  • Xinxiang Vocational and Technical College, Xinxiang 453000, China
Bibliografia
  • [1] Jacobs B.W., Singhal V.R., Shareholder value effects of the Volkswagen emissions scandal on the automotive ecosystem, Production and Operations Management, vol. 29, no. 10, pp. 2230–2251 (2020), DOI: 10.1111/poms.13228.
  • [2] Othman G., Zeebaree D.Q., The applications of discrete wavelet transform in image processing: A review, Journal of Soft Computing and Data Mining, vol. 1, no. 2, pp. 31–43 (2020), DOI: 10.30880/jscdm.2020.01.02.004.
  • [3] Rinoshika A., Rinoshika H., Application of multi-dimensional wavelet transform to fluid mechanics, Theoretical and Applied Mechanics Letters, vol. 10, no. 2, pp. 98–115 (2020), DOI: 10.1016/j.taml.2020.01.017.
  • [4] Zeng N., Wang Z., Liu W., Zhang H., Hone K., Liu X., A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9290–9301 (2020), DOI: 10.1109/TCYB.2020.3029748.
  • [5] Lee J., Lee H., Nah W., Minimizing the number of X/Y capacitors in an autonomous emergency brake system using the BPSO algorithm, IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1630–1640 (2021), DOI: 10.1109/TPEL.2021.3104671.
  • [6] Long Z., Zhang X., He M., Huang S., Qin G., Song D., Tang Y., Wu G., Liang W., Shao H., Motor fault diagnosis based on scale invariant image features, IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1605–1617 (2021), DOI: 10.1109/TII.2021.3084615.
  • [7] Wang F., Liu R., Hu Q., Chen X., Cascade convolutional neural network with progressive optimization for motor fault diagnosis under nonstationary conditions, IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2511–2521 (2020), DOI: 10.1109/TII.2020.3003353.
  • [8] Wang J., Fu P., Ji S., Li Y., Gao R.X., A light weight multisensory fusion model for induction motor fault diagnosis, IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4932–4941 (2022), DOI: 10.1109/TMECH.2022.3169143.
  • [9] Xu Y., Yan X., Sun B., Liu Z., Deep coupled visual perceptual networks for motor fault diagnosis under nonstationary conditions, IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4840–4850 (2022), DOI: 10.1109/TMECH.2022.3166839.
  • [10] Fu P., Wang J., Zhang X., Zhang L., Gao R.X., Dynamic routing-based multimodal neural network for multi-sensory fault diagnosis of induction motor, Journal of Manufacturing Systems, vol. 55, no. 4, pp. 264–272 (2020), DOI: 10.1016/j.jmsy.2020.04.009.
  • [11] Chikkam S., Singh S., Condition monitoring and fault diagnosis of induction motor using DWT and ANN, Arabian Journal for Science and Engineering, vol. 48, no. 5, pp. 6237–6252 (2023), DOI: 10.1109/ICEES51510.2021.9383729.
  • [12] Singla P., Duhan M., Saroha S., A hybrid solar irradiance forecasting using full wavelet packet decomposition and bi-directional long short-term memory (BiLSTM), Arabian Journal for Science and Engineering, vol. 47, no. 11, pp. 14185–14211 (2022), DOI: 10.1007/s13369-022-06655-2.
  • [13] Lu G., Wen X., He G., Yi X., Yan P., Early fault warning and identification in condition monitoring of bearing via wavelet packet decomposition coupled with graph, IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 3155–3164 (2021), DOI: 10.1109/TMECH.2021.3110988.
  • [14] Habbouche H., Benkedjouh T., Zerhouni N., Intelligent prognostics of bearings based on bidirectional long short-term memory and wavelet packet decomposition, The International Journal of Advanced Manufacturing Technology, vol. 114, no. 1, pp. 145–157 (2021), DOI: 10.1007/s00170-021-06814-z.
  • [15] Liu Y., Dhakal S., Hao B., Coal and rock interface identification based on wavelet packet decomposition and fuzzy neural network, Journal of Intelligent and Fuzzy Systems, vol. 38, no. 4, pp. 3949–3959 (2020), DOI: 10.3233/jifs-179620.
  • [16] Sairamya N.J., Premkumar M.J., George S.T., Subathra M.S.P., Performance evaluation of discrete wavelet transform, and wavelet packet decomposition for automated focal and generalized epileptic seizure detection, IETE Journal of Research, vol. 67, no. 6, pp. 778–798 (2021), DOI: 10.1080/03772063.2019.1568206.
  • [17] Tang L., Zhao M., Wu X., Accurate classification of epilepsy seizure types using wavelet packet decomposition and local detrended fluctuation analysis, Electronics Letters, vol. 56, no. 17, pp. 861–863 (2020), DOI: 10.1049/el.2020.1471.
  • [18] Yadav S., Sudman M.S.I., Dubey P.K., Srinivas R.V., Srisainath R., Devi V.C., Development of an GA-RBF based Model for Penetration of Electric Vehicles and its Projections, 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS), IEEE, pp. 1–6 (2023), DOI: 10.1109/ICSSAS57918.2023.10331883.
  • [19] Yang M., Research on vehicle automatic driving target perception technology based on improved MSRPN algorithm, Journal of Computational and Cognitive Engineering, vol. 1, no. 3, pp. 147–151 (2022), DOI: 10.47852/bonviewJCCE20514.
  • [20] Jiang S., Zhou B., Huang X., Xiong L., Wei J., Fault-tolerant system design for doubly salient electromagnetic machine under loss of excitation, IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 4589–4599 (2021), DOI: 10.1109/TPEL.2021.3123292.
  • [21] Dubey P.K., Singh B., Kumar V., Singh D., A novel approach for comparative analysis of distributed generations and electric vehicles in distribution systems, Electr. Eng., pp. 1–20 (2023), DOI: 10.1007/s00202-023-02072-2.
  • [22] Singh B., Dubey P.K., Singh S.N., Recent optimization techniques for coordinated control of electric vehicles in super smart power grids network: A state of the art, 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, pp. 1–7 (2022), DOI: 10.1109/UPCON56432.2022.9986471.
  • [23] Dubey P.K., Singh B., Patel D.K., Singh D., Distributed generation current scenario in the world, Int. J. Multidiscip. Res., vol. 5, no. 4, pp. 1–25 (2023), DOI:10.36948/ijfmr.2023.v05i04.4625.
  • [24] Singh B., Dubey P.K., Distributed power generation planning for DN using electric vehicles: Systematic attention to challenges and opportunities, J. Ener. Stor., vol. 48, no. 1, pp. 1–42 (2022), DOI: 10.1016/j.est.2022.104030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef042ab3-3ad5-45e6-859c-5a3cee6e41f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.