PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evidence of high-temperature rock salt transformations in areas of occurrence of borate minerals (Zechstein, Kłodawa salt dome, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Occurrences of borate minerals in the Zechstein salt-bearing deposits of the Kłodawa salt dome (central Poland), and the manner of their development, suggest that the minerals were formed at high temperatures, that considerably exceed the temperature estimated from the thermal gradient (~180°C). Research on rock salt and potassium-magnesium salts containing congolite and boracite, respectively, are consistent with high-temperature processes of transformations affecting the salt rocks in certain sections of the salt dome. The chemical composition of, and daughter minerals occurring in, primary fluid inclusions in halite, originating from the congolite zone, indicated a very high proportion of potassium and magnesium in the brines from which the halite crystallised. The thermal transformations observed in inclusions indicate a halite crystallisation temperature exceeding 420°C. Anhydrite crystals, co-occurring with borate minerals, represent unique features as to the distribution and composition of solid and fluid inclusions. These features indicate crystallisation or recrystallisation in conditions that differed considerably from those typical of the salt dome, with the involvement of solutions of changing chemical compositions. The crystals contain multiple solid inclusions of transparent and non-transparent minerals, among which we have focused on carnallite. The relationships of carnallite with liquid and gaseous phases indicate, as in the congolite zone, migration of very highly concentrated brines with respect to potassium and magnesium, or even transport of carnallite in the form of melt (liquid). Measurements of fluid inclusion homogenization temperatures, within the range from 197.8 to 473.8°C, supported a high-temperature origin for these minerals in hydrothermal conditions.
Rocznik
Strony
134--145
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Geosalt – Badania i ekspertyzy geologiczne złóż soli, Rzepichy 42, 30-240 Kraków, Poland
Bibliografia
  • 1. Benison, K.C., Goldstein, R.H., 1999. Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154:113-132.
  • 2. Bodnar, R.J., Vityk, M.O., 1994. Interpretation of microthermometric data for H2O-NaCl inclusions. In: Fluid Inclusions in Minerals, Methods and Applications (eds. B. De Vivo and M.L. Frezzotti): 117-130. Virginia Tech, Blacksburg, VA.
  • 3. Borchert, H., Muir, R.O., 1964. Salt Deposits. The Origin, Metamorphism and Deformation of Evaporites. D. Van Nostrand Company, Ltd. London.
  • 4. Braitsch, O., 1971. Salt Deposits their Origin and Composition. Springer, New York.
  • 5. Burliga, S., Kolonko, P., Misiek, G., Czapowski, G., 1995. Kłodawa salt mine. In: Upper Rotliegend-Zechstein: Terresttrial-Marine Sedimentary Succession in Polish Permian Basin. XIII International Congress on Carboniferous-Permian, August 28 - September 2, 1995, Guide to Excursion A3, Kraków, Poland: 45-54.
  • 6. Burns, P.C., Carpenter, M.A., 1996. Phase transitions in the series boracite-trembatite-congolite: phase relations. Canadian Mineralogist, 34: 881-892.
  • 7. Burns, P.C., Carpenter, M.A., 1997. Phase transitions in the series boracite-trembatite-congolite: an infrared spectroscopic study. Canadian Mineralogist, 35: 189-202.
  • 8. Dadlez, R., 1989. Epicontinental Permian and Mesozoic basins in Poland (in Polish with English summary). Geological Quarterly, 33 (2): 175-198.
  • 9. Dadlez, R., 2001. Mid-Polish Trough - geological cross-sections. Państwowy Instytut Geologiczny, Warszawa.
  • 10. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., van Wees, J-D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for Central European geology. Tectonophysics, 252: 179-195.
  • 11. Dadlez, R., Iwanow, A., Marek, S., 1998. Mapa strukturalna kompleksu cechsztyńsko-mezozoicznego (in Polish). In: Mapa tektoniczna kompleksu cechsztyńsko-mezozoicznego na Niżu Polski, skala 1:500 000 (ed. R. Dadlez). Państwowy Instytut Geologiczny, Warszawa.
  • 12. Dean, W.E., 1978. Trace and minor elements in evaporites. SEPM Short Course, 4: 86-104.
  • 13. Diamond, L.W., 1990. Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in Late-Alpine gold-quartz veins at Brusson, Val d'Ayas, NW Italian Alps. American Journal of Science, 290: 912-958.
  • 14. Diamond, L.W., 2001. Review of the systematics of CO2-H2O fluid inclusions. Lithos, 55: 69-99.
  • 15. Emons, H.H., Fanghänel, T., 1989. Thermal decomposition of carnallite (KCl MgCl2 6H2O) - comparison of experimental results and phase equilibria. Journal of Thermal Analysis, 35: 2161-2167.
  • 16. Garlicki, A., Szybist, A., 1986. Saline deposits of Polish Zechstein with potash salts (in Polish with English summary). Gospodarka Surowcami Mineralnymi, 2: 389-404.
  • 17. Garlicki, A., Szybist, A., 1991. Trace elements in salts of Kłodawa Salt Mine (in Polish). Prace Specjalne PTMin., 1: 71-76.
  • 18. Goldstein, R.H., 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55: 159-193.
  • 19. Goldstein, R.H., Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course, 31: 1-199.
  • 20. Holser, W.T., 1979. Trace elements and isotopes in evaporites. Mineralogical Society of America, Short Course Notes, 6: 295-346.
  • 21. Hryniv, S., Peryt, T.M., 2010. Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydrites of West Poland. Chemie der Erde, 70: 137-147.
  • 22. Knight, C.L., Bodnar, R.J., 1989. Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions. Geochimica et Cosmochimica Acta, 53: 3-8.
  • 23. Kovalevych, V., Vovnyuk, S., 2010. Fluid inclusions in halite from marine salt deposits: are they real micro-droplets of ancient seawater? Geological Quarterly, 54 (4): 401-410.
  • 24. Kovalevych, V.M., Peryt, T.M., Carmona, V., Sydor, D.V., Vovnyuk, S.V., Halas, S., 2002. Evolution of Permian seawater: evidence from fluid inclusions in halite. Neues Jahrbuch für Mineralogie Abhandlungen, 178: 27-62.
  • 25. Kovalevych, V.M., Marshall, T., Peryt, T.M., Petrychenko, O.Y., Zhukova, S.A., 2006. Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144: 39-51.
  • 26. Kovalevych, V., Paul, J., Peryt, T.M., 2009. Fluid inclusions in halite from the Rot (Lower Triassic) salt deposit in Central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporites, 24: 45-57.
  • 27. Krzywiec, P., 2004. Triassic evolution of the Kłodawa salt structure: basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly, 48 (2): 123-134.
  • 28. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 29. Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G., Kwolek, K., 2017. Permo-Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an overview. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins Tectonics and Hydrocarbon Potential (eds. J.I. Soto, J.F. Flinch, G. Tari): 243-261, Elsevier.
  • 30. Kucia Z., 1970. Nowe człony stratygraficzne cechsztynu w kopalni „Kłodawa” (in Polish). Przegląd Geologiczny, 18: 345-346.
  • 31. Kühn, R., 1968. Geochemistry of German potash deposits. GSA Special Papers, 88: 427-504.
  • 32. Łaszkiewicz, A., 1967. Salt minerals and rocks (in Polish with English summary. Prace Muzeum Ziemi, 11: 101-188.
  • 33. Łaszkiewicz, A., Langier-Kuźniarowa, A., 1966. Application of the thermal analysis to the investigation of salt rocks (in Polish with English summary). Archiwum Mineralogiczne, 25: 131-159.
  • 34. Petrychenko, O.Y., Peryt, T.M., 2004. Geochemical conditions of deposition in the Upper Devonian Prypiac' and Dnipro-Donets evaporite basins (Belarus and Ukraine). Journal of Geology, 112: 577-592.
  • 35. Poborski, J., 1970. The Upper Permian Zechstein in the eastern province of Central Europe. In: Third Symposium on Salt (eds. J.L. Rau and L.F. Dellwig): 24-29. Northern Ohio Geological Society.
  • 36. Poborski, J., 1971. Przewrót w poglądach na tektonikę wysadów solnych w regionie kujawskim (in Polish). Materiały z Kolokwium pod hasłem „Postęp w badaniach złóż surowców mineralnych” na temat geologii salinarnej w rejonie kujawskim. Wyd. AGH.
  • 37. Poborski, J., 1974. On the tectogenesis of some diapiric salt structures in Central Poland, Upper Permian. In: Fourth Symposium on Salt (ed. A.H. Coogan): 267-269. Northern Ohio Geological Society.
  • 38. Roedder, E., 1984a. Fluid inclusions. Mineralogical Society of America, Short Course Notes, 12: 1-644.
  • 39. Roedder, E., 1984b. The fluid in salt. American Mineralogist, 69: 413-439.
  • 40. Sonnenfeld, P., 1984. Brines and Evaporites. Academic Press, Orlando.
  • 41. Stańczyk, I., 1970. Polyhalite in the salt mines of the Kujawy region (in Polish with English summary). Acta Geologica Polonica, 20: 805-821.
  • 42. Stańczyk, I., 1971. Występowanie wtórnych agregatów mineralnych w kujawskiej serii solnej (in Polish). Sprawozdawania z Posiedzeń Komisji Naukowych. Oddz. PAN, w Krakowie, 15: 224.
  • 43. Stańczyk-Stasik, I., 1976. Les dépots ěpigénétiques dans les mines de sel de la région de Kujawy (in Polish with French summary). Prace Geologiczne, 90: 1-64.
  • 44. Sterner, S.M., Hall, D.L., Bodnar, J.B., 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52: 989-1005.
  • 45. Toboła, T., 2014. The influence of tectonics on petrological characteristics of anhydrite and anhydrite-halite intercalations in the Oldest Halite (Na1) (Zechstein, Upper Permian) of the Bądzów area (SW Poland). Geological Quarterly, 58 (3): 531-542.
  • 46. Toboła, T., 2016. Inclusions in anhydrite crystals from blue halite veins in the Kłodawa Salt Dome (Zechstein, Poland). Geological Quarterly, 60 (3): 572-585.
  • 47. Trusheim, F., 1957. Über Halokinese und ihre Bedeutung für die strukturelle Entwicklung Norddeutschlands. Zeitschrift der Deutschen Geologischen Gesellschaft, 109: 111-158.
  • 48. Wachowiak, J., Pieczka, A., 2012. Congolite and trembatite from the Kłodawa Salt Mine, central Poland: record of the thermal history of the parental salt dome. Canadian Mineralogist, 50: 1387-1399.
  • 49. Wachowiak, J., Toboła, T., 2014. Phase transitions in the borate minerals from the Kłodawa salt dome (central Poland) as indicators of temperature processes in salt diapirs. Geological Quarterly, 58 (3): 543-554.
  • 50. Werner, Z., Poborski, J., Orska, J., Bąkowski, J., 1960. A geological and mining outline of the Kłodawa salt deposit (in Polish with English summary). Prace Instytutu Geologicznego, 30:467-495.
  • 51. Warren, J., 1999. Evaporites. Their Evolution and Economics. Blackwell Science Ltd., Oxford.
  • 52. Zherebtsova, I.K., Volkova, N.N., 1966. Experimental study of microelement behavior during natural solar evaporation of the Black Sea water and Lake Sasyk-Sivash brine (in Russian). Geokhimiya, 7: 832-845.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eeff481e-c813-4daf-8b2b-4fc2c611dcf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.