PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Luminescence dating procedures at the Gliwice Luminescence Dating Laboratory

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gliwice Luminescence Laboratory (GLL) is a part of the Institute of Physics – Centre for Science and Education at the Silesian University of Technology, which has gradually evolved since the 1980s. To date, nearly 3500 samples have been dated using luminescence from materials such as ceramics, bricks, and sediments from archaeological and geological sites. Currently, the laboratory is equipped with four luminescence readers and three gamma spectrometers, allowing luminescence dating of approximately 300 samples annually for the needs of research projects. This article focuses on the laboratory procedures used in GLL to obtain luminescence ages. Recent improvements of the GLL's facilities and new equipment, as well as the performance spanning the Laboratory's 30 years of activity, are discussed in terms of obtained results and the involvement in national and international projects.
Wydawca
Czasopismo
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
autor
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
Bibliografia
  • 1. Adamiec G, Herr A and Bluszcz A, 2012. Statistics of count numbers from a photomultiplier tube and its implication for error estimation. Radiation Measurements 47: 746–751.
  • 2. Agatova A, Nepop R, Carling A, Bohorquez P, Khazin B, Zhdanova N and Moska P, 2020. Last ice-dammed lake in the Kuray Basin, Russian Altai: new results from multidisciplinary research. Earth Science Review 200, DOI: 10.1016/j.earscirev.2020.103183.
  • 3. Aitken MJ and Xie J, 1990. Moisture correction for annual gamma dose. Ancient TL, 6–9.
  • 4. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London, 359pp.
  • 5. Aitken MJ, 1998. An Introduction to Optical Dating. Oxford University Press, Oxford.
  • 6. Anechitei-Decu V, Timar-Gabor A, Constantin D, Trandafir-Antohi O, Del Valle L, Fornos J, Gomez-Pujol L and Wintle A, 2018. Assessing the maximum limit of SAR-OSL dating using quartz of different grain sizes. Geochronometria 45: 146–159.
  • 7. Arnold LJ, Bailey RM, Tucker GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2: 162–167.
  • 8. Arnold LJ and Roberts RG, 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology 4: 204–230.
  • 9. Bell WT, 1979. Attenuation factors for the absorbed radiation dose in quartz inclusions for thermoluminescence dating. Ancient TL 8: 2–13.
  • 10. Berger GW, 2010. An alternate form of probability-distribution plot for De values. Ancient TL 28: 11–22.
  • 11. Bluszcz A, 1986a. Basis for dating of sediments using thermoluminescence method. Geochronometria 1: 109–124 (in Polish).
  • 12. Bluszcz A, 1986b. The research facilities and method of measurements in Gliwice TL laboratory. Geochronometria 1: 147–157 (in Polish).
  • 13. Bøtter-Jensen L and Mejdahl V, 1988. Assessment of beta dose-rate using a GM multicounter system. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 187–191, DOI: 10.1016/1359-0189(88)90062-3.
  • 14. Brennan BJ, Lyons RG and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 249–253, DOI: 10.1016/1359-0189(91)90119-3.
  • 15. Chruścińska A, Cicha A, Kijek N, Palczewski P, Przegiętka K and Sulkowska-Tuszyńska K, 2014. Luminescence dating of bricks from the gothic Saint James Church in Toruń. Geochronometria 41(4): 352–360, DOI: 10.2478/s13386-013-0165-y.
  • 16. Cresswell AJ, Carter J and Sanderson DCW, 2018. Dose rate conversion parameters: assessment of nuclear data. Radiation Measurements 120: 195–201. DOI: 10.1016/J.RADMEAS.2018.02.007.
  • 17. Cunningham AC, Murray AS, Armitage SJ and Autzen M, 2018. High-precision natural dose rate estimates through beta counting. Radiation Measurements 120(March): 209–214, DOI: 10.1016/j.radmeas.2018.04.008.
  • 18. Cutshall N, Larsen IL and Olsen CR, 1983. Direct analysis of Pb-210 in sediment samples: a self-absorption corrections. Nuclear Instruments and Methods in Physics Research 206: 309–312.
  • 19. Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37: 589–612.
  • 20. Durcan JA, King GE and Duller GAT, 2015. DRAC: dose rate and age calculator for trapped charge dating. Quaternary Geochronology 28: 54–61, DOI: 10.1016/J.QUAGEO.2015.03.012.
  • 21. Fedorowicz S and Olszak I, 1985. TL studies of quaternary sediments at the University of Gdańsk. Ancient TL 3: 10–14.
  • 22. Fedorowicz S, Łanczont M, Bogucki A, Kusiak J, Mroczek P, Adamiec G, Bluszcz A, Moska P and Tracz M, 2013. Loess-paleosol sequence at Korshiv (Ukraine): chronology based on complementary and parallel dating (TL, OSL), and litho-pedosedimentary analyses. Quaternary International 296: 117–130.
  • 23. Fedorowicz S, Łanczont M, Mroczek P, Bogucki A, Standzikowski K, Moska P, Kusiak J and Bluszcz A, 2018. Luminescence dating of the Volochysk section – a key Podolian loess site (Ukraine). Geological Quaterly 62: 729–744.
  • 24. Galbraith RF, Roberts RG and Yoshida H, 2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment. Radiation Measurements 39: 289–307.
  • 25. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835–1857.
  • 26. Guérin G, Mercier N, Nathan R, Adamiec G and Lefrais Y, 2012. On the use of the infinite matrix assumption and associated concepts: a critical review. Radiation Measurements 47(9): 778–785, DOI: 10.1016/J.RADMEAS.2012.04.004.
  • 27. Hansen V, Murray A, Buylaert JP, Yeo EY and Thomsen K, 2015. A new irradiated quartz for beta source calibration. Radiation Measurement 81: 123–127.
  • 28. Jacobs Z, 2004. Development of luminescence techniques for dating Middle Stone Age sites in South Africa. Unpublished Ph.D. thesis, University of Wales, Aberystwyth.
  • 29. Jacobs Z, Duller GAT, Wintle A, Henshilwood Ch, 2006. Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optical dating of single and multiple grains of quartz. Journal of Human Evolution 51: 255–273.
  • 30. Kessler P, Behnke B, Dabrowski R, Dombrowski H, Röttger A and Neumaier S, 2018. Novel spectrometers for environmental dose rate monitoring. Journal of Environmental Radioactivity 187: 115–121.
  • 31. Liritzis I, Singhvi A, Feathers J, Wagner G, Kaderit A, Zacharias N and Li S-H, 2013. Luminescence dating of archaeological materials. In: Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology. SpringerBriefs in Earth System Sciences. Springer, Heidelberg. DOI: 10.1007/978-3-319-00170-8_4
  • 32. Markovic SB, Bokhorst MP, Vandenberghe J, McCoy WD, Oches EA and Hambach U, 2008. Late Pleistocene loess-paleosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23: 73–84.
  • 33. Miłosz S, Tudyka K, Walencik-Łata A, Barwinek S, Bluszcz A and Adamiec G, 2017. Pulse height, pulse shape, and time interval analyser for delayed α/β coincidence counting. IEEE Transactions on Nuclear Science 64(9): 2536–2542, DOI: 10.1109/TNS.2017.2731852.
  • 34. Moska P and Bluszcz A, 2013. Luminescence dating of loess profiles in Poland. Quaternary International 10: 51–60.
  • 35. Moska P, 2019. Luminescence dating of quaternary sediments – some practical aspects. Studia Quaternaria 36: 161–169.
  • 36. Moska P, Adamiec G, Jary Z and Bluszcz A, 2017. OSL chronostratigraphy for loess deposits from Tyszowce – Poland. Geochronometria 44: 307–318.
  • 37. Moska P, Adamiec G, Jary Z, Bluszcz A, Poręba G, Piotrowska N, Krawczyk M and Skurzyński J, 2018a. Luminescence chronostratigraphy for the loess deposits in Złota, Poland. Geochronometria 45: 44–55.
  • 38. Moska P, Stankowski W and Poręba G, 2018b. Optically stimulated luminescence techniques applied to the dating of the fall of meteorites in Morasko. Geochronometria 45(1): 74–81, DOI: 10.1515/geochr-2015-0088.
  • 39. Moska P, Admiec G and Jary Z, 2011. OSL dating and lithological characteristics of loess deposits from Biały Kościół. Geochronometria 38: 162–171.
  • 40. Moska P, Admiec G and Jary Z, 2012. High resolution dating of loess profile from Biały Kościół, south–west Poland. Quaternary Geochronology 10: 87–93.
  • 41. Moska P, Jary Z, Adamiec G and Bluszcz A, 2015. OSL chronostratigraphy of a loess-palaeosol sequence in Złota using quartz and polymineral fine grains. Radiation Measurements 81: 23–31.
  • 42. Moska P, Jary Z, Adamiec G and Bluszcz A, 2019a. High resolution dating of loess profile from Strzyżów (Horodło Plateau-Ridge, Volhynia Upland). Quaternary International 502(Part A): 18–29.
  • 43. Moska P, Bluszcz A, 2013. Luminescence dating of loess profiles in Poland. Quaternary International 10: 51–60.
  • 44. Moska P, Adamiec G, Jary Z and Bluszcz A, 2019b. Chronostratigraphy of a loess-palaeosol sequence in Biały Kościół, Poland using OSL and radiocarbon dating. Quaternary International 502(Part A): 4–17.
  • 45. Moska P, Jary Z, Sokołowski J, Poręba G, Raczyk J, Krawczyk M, Skurzyński J, Zieliński P, Michczyński A, Tudyka K, Adamiec G, Piotrowska N, Pawełczyk F, Łopuch M, Szymak A and Ryzner K, 2020. Chronostratigraphy of Late Glacial aeolian activity in SW Poland – a case study from the Niemodlin Plateau. Geochronometria 47: 124–137, DOI: 10.2478/geochr-2020-0015.
  • 46. Moska P, Poręba G, Bluszcz A and Wiszniowska A, 2008. Combined IRSL/OSL dating of fine grains from Lake Baikal sediments. Geochronometria 31: 39–43.
  • 47. Murray A, Buylaert JP and Thiel Ch, 2015. A luminescence dating intercomparison based on Danish beach-ridge sand. Radiation Measurement 81: 32–38.
  • 48. Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1–16.
  • 49. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73.
  • 50. Murray AS, Marten R, Johnston A, Martin P, 1987. Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115: 263–288.
  • 51. Pazdur MF and Bluszcz A, 1987a. Application of thermoluminescence chronometry in chronostratigraphy of Quaternary, Part I. Przegląd Geologiczny 35(11): 566–570 (in Polish).
  • 52. Pazdur MF and Bluszcz A, 1987b. Application of thermoluminescence chronometry in chronostratigraphy of Quaternary, Part II. Przegląd Geologiczny 35(12): 624–628 (in Polish).
  • 53. Poręba G and Bluszcz A, 2007. Determination of the initial 137Cs fallout on the areas contaminated by Chernobyl fallout. Geochronometria 26: 35–38.
  • 54. Poręba G, Śnieszko Z and Moska P, 2013. Influence of pedon history and washing nature on luminescence dating of Holocene colluvium on the example of research on the Polish loess areas. Quaternary International 296: 61–67.
  • 55. Poręba G, Śnieszko Z and Moska P, 2015. Application of OSL dating and 137Cs measurements to reconstruct the history of water erosion: a case study of a Holocene colluvium in Świerklany, South Poland. Quaternary International 374: 189–197.
  • 56. Poręba G, Śnieszko Z, Moska P and Mroczek P, 2019a. Deposits of Neolithic water soil erosion in the loess region of the Małopolska Upland (S Poland) – a case study of the settlement micro-region in Bronocice. Quaternary International 502: 45–59.
  • 57. Poręba G, Śnieszko Z, Moska P, Mroczek P and Malik I, 2019b. Interpretation of soil erosion in a Polish loess area using OSL, 137Cs, 210Pbex, dendrochronology and micromorphology – case study: Biedrzykowice site (S Poland). Geochronometria 46: 57–78.
  • 58. Poręba G, Tudyka K, Walencik-Łata A and Kolarczyk A, 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156: 108945, DOI: 10.1016/j.apradiso.2019.108945.
  • 59. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497–500.
  • 60. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL 13: 9–14.
  • 61. Rhodes EJ and Schwenninger J-L, 2007. Dose rates and radioisotope concentrations in the concrete calibration blocks at Oxford. Ancient TL 25: 5–8.
  • 62. Sanderson DCW, 1988. Thick source beta counting (TSBC): a rapid method for measuring beta dose-rates. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 203–207, DOI: 10.1016/1359-0189(88)90065-9.
  • 63. Sjostrand H and Prescott JR, 2002. Thick source alpha counting: the measurement of thorium. Ancient TL 20(1): 7–10.
  • 64. Sobczyk A, Borówka R, Badura J, Stachowicz-Rybka R, Tomkowiak J, Hrynowiecka A, Sławińska J, Tomczak M, Pitura M, Lamentowicz M, Kołaczek P, Karpińska-Kołaczek M, Tarnowski D, Kadej M, Moska P, Krąpiec M, Stachowicz K, Bieniek B, Siedlik K, Bąk M, Van der Made J, Kotowski A and Stefaniak K, 2020. Geology, stratigraphy and palaeoenvironmental evolution of the Stephanorhinus kirchbergensis-bearing Quaternary palaeolake(s) of Gorzow Wielkopolski (NW Poland, Central Europe). Journal of Quaternary Science 35(4): 539–558, DOI: 10.1002/jqs.3198.
  • 65. Thomsen KJ, Murray AS, Buylaert JP, Jain M, Hansen JH and Aubry T, 2016. Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d’Abilly site, Central France). Quaternary Geochronology 31: 77–96.
  • 66. Tudyka K, Bluszcz A, Poręba G, Miłosz S, Adamiec G, Kolarczyk A, Kolb T, Lomax J and Fuchs M, 2020. Increased dose rate precision in combined α and β counting in the μDose system – a probabilistic approach to data analysis. Radiation Measurements 134: 106310, DOI: 10.1016/j.radmeas.2020.106310.
  • 67. Tudyka K, Miłosz S, Adamiec G, Bluszcz A, Poręba G, Paszkowski Ł and Kolarczyk A, 2018. μDose: a compact system for environmental radioactivity and dose rate measurement. Radiation Measurements 118: 8–13, DOI: 10.1016/j.radmeas.2018.07.016.
  • 68. Tylmann W, Enters D, Kinder M, Moska P, Ohlendorf C, Poręba G and Zolitschka B, 2013. Multiple dating of varved sediments from Lake Łazduny, northern Poland: toward an improved chronology for the last 150 years. Quaternary Geochronology 15: 98–107.
  • 69. Uścinowicz S, Adamiec G, Bluszcz A, Jegliński W, Jurys L, Miotr-Szpiganowicz G, Moska P, Pączek K, Piotrowska N, Poręba G, Przezdziecki P and Uścinowicz G, 2019. Chronology of the last ice sheet de cay on the south ern Baltic area based on dating of glaciofluvial and ice-dammed lake deposits. Geological Quaterly 63: 193–208.
  • 70. Wallinga J, Murray AS and Duller GAT, 2000. Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32: 691–695.
  • 71. Wiśniewski A, Połtowicz-Bobak M, Bobak D, Jary Z and Moska P, 2017. The Epigravetian and the Magdalenian in Poland: new chronological data and old problem. Geochronometria 44: 16–29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eefd561b-d6c1-4cfb-8bd5-fabc2a2e85bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.