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Abstract: Green cars and electronic products consume lots of lithium-ion batteries (LIBs), and massive 
spent LIBs are yielded due to performance degradation. This paper provides an economical and 
environmentally friendly approach to recover valuable metals from cathode materials of the spent LIBs. 
It combines the in-situ thermal reduction (self-reduction by polyvinylidene fluoride (PVDF) and 
residual electrolyte in cathode material) and sulfuric acid leaching. Elements of high valent are reduced 
by the binder (PVDF) and the residual electrolyte on the surface of NCM(LiNixCoyMn1-x-yO2) material 
at high temperatures. Moreover, the changes in substance type, element valency, and contents of 
cathode materials reduced with various terminal temperatures and retention time are analyzed by X-
ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Results show that the optimal 
terminal temperature for in-situ thermal reduction is 600 °C, and the optimum retention time is 120 min. 
Under the best in-situ thermal reduction conditions, the results from XRD confirm that part of Ni2+ is 
converted to simple substance Ni, Co3+ is reduced to Co, and Mn4+ is reduced to Mn2+ and elemental 
Mn, which are confirmed by XRD. Analyzed results by XPS indicate that the content of Ni2+ decreases 
to 67.05%, and Co3+ is completely reduced to Co. Mn4+ is reduced to 91.41% of Mn2+ and 8.59% of simple 
substance Mn. In-situ thermal reduction benefits the leaching processes of cathode materials. The 
leaching efficiencies of Ni, Co, and Mn increase from 53.39%, 51.95%, and 0.71% to 99.04%, 96.98%, and 
97.52%, respectively. 
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1. Introduction 

The demand for lithium-ion batteries (LIBs) has grown dramatically due to the rapid development of 
electric vehicles and energy storage technologies, which now account for the largest share (Zhang et al., 
2016). LIBs are typically used as power supplies since the advantages of high energy density and low 
self-discharge rate are obvious (Gao et al., 2018). However, the service life of LIB is limited, and statistics 
shows that there will be 500,000 tons of spent LIBs by 2020 (Liu et al., 2019, Golmohammadzadeh et al., 
2018). With the continuous development of technology and industrial economy, the demand of metals 
increases dramatically (Afum et al., 2019). Valuable metals in spent LIBs include Li, Ni, Co, Mn, Cu, Fe, 
Al, etc (Zeng and Li, 2014b), and the grade is higher than that of natural ores (Zhu et al., 2020a). While 
toxic heavy metal substances and corrosive electrolytes in spent LIBs show the potential risks of 
environment pollution if they are not handled properly (Yang et al., 2016; Zhu et al., 2020b; Fu et al., 
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2019). Therefore, it is essential to find methods for the effective and environmentally friendly recovery 
of spent LIBs. At present, standard methods are mainly hydrometallurgy, pyrometallurgy, and the 
combination of two ways (Barik et al., 2016). Among them, hydrometallurgy is widely applied because 
of the high metal recovery rate and low environmental impact. Hydrometallurgy mainly refers to the 
leaching by inorganic acid (Meshram et al., 2015). Chemical bonds of cathode materials are destroyed 
during the acid leaching process, and valuable metals are in solution with the ion form. However, the 
leaching process with organic acid or inorganic acid faces the following two problems:  

Generally, the organic binder (such as PVDF) is used to adhere cathode material to aluminum sheet 
(Gratz et al., 2014). It makes the surface of all cathode materials covered by the organic film, which make 
it difficult for cathode materials falling off from the correct collector. It results in a negative effect on the 
leaching process. So, the first problem is how to effectively remove binder (PVDF) and other organic 
matter effectively. Wang et al. used a low-temperature roasting method. The optimal removal of the 
organic layer and the original exposed surface of cathode material were achieved under the calcination 
condition at 450 ℃ for 15 min (Wang et al., 2018). Zhang et al. put the mixture of electrode material and 
current collector into a water bath at 55 ℃, and the separation of two types of materials was realized by 
the combination of ultrasonic and stirring (Zhang et al., 2014). Except for the methods above, the 
separation of electrode material from the current collector can be achieved by dissolving the binder in 
solvent (He et al., 2017; He et al., 2018). Lu et al. placed the electrode sheet in N-methyl pyrrolidone 
(NMP) to dissolve the binder and realize the separation of cathode material from Al sheet (Yao et al., 
2015). The current collector also can be dissolved by an alkali solution. Ferreira et al. dissolved spent 
cathode sheet with 10% (in mass) NaOH, followed by the twice leaching processes in solid-liquid ratio 
at 1:30 g/cm3, temperature 30 ℃ and time 1 h. Nearly 80% Al was removed (Ferreira et al., 2009). 

On the other hand, due to the existence of strong chemical bonds and high-valence elements, the 
leaching efficiency of the cathode material cannot reach the optimal value even under a long leaching 
time. Therefore, many studies focused on the reduction of metal by adding the reducing agent hydrogen 
peroxide (H2O2) at the leaching stage. Meshram et al. studied the leaching treatment of waste LIBs 
cathode materials treated by sulfuric acid. Under the best conditions (1 M H2SO4 at 368 K and 50 g/dm3 
pulp density for 240 min), the leaching rates of Li, Ni, Co, and Mn are 93.4%, 96.3%, 66.2%, and 50.2%, 
respectively. He found that the poor leaching efficiency is caused by the organic film on the surface of 
cathode materials. To improve the leaching efficiency, it is necessary to add a reducing agent (such as 
H2O2) (Meshram et al., 2015). Also, reducing materials were added with cathode for a thermal reduction 
before leaching. Liu et al. mixed the spent NCM(LiNixCoyMnzO2) with coke for vacuum pyrolysis, 
followed by water leaching and sulfuric acid leaching. Under the conditions of calcination temperature 
of 650 ℃, coke content of 10% , and calcination time of 30 min, the leaching efficiencies of Li, Ni, Co, 
and Mn were 93.67%, 93.33%, 98.08% and 98.68%, respectively (Liu et al., 2019). Zhang et al. conducted 
the leaching of treated spent NCM, which was thermally reduced by lignite. Under the conditions of 
calcination temperature of 650 ℃, lignite content of 20% and calcination time of 3 h, the leaching 
efficiency of Li was more than 80%, and leaching efficiencies of Ni, Co, and Mn were more than 96% 
(Zhang, J. et al., 2018). In summary, the methods above show some inevitable shortcomings for the 
separation of cathode material with current collector and destruction of strong chemical bond for the 
higher leaching efficiency of metal. For example, the addition of reducing reagents (except H2O2) in 
thermal or leaching treatment would result in the introduction of impurities. 

The cathode plate of one LIB generally consists of the cathode material (LiCoO2, LiNixCoyMnzO2, 
and LiFePO4), conductive agent (acetylene black), binder (PVDF), and current collector of Al sheet (Yao 
et al., 2018). The organic film composed of the PVDF and the electrolyte covers all gains of cathode 
material. All organic components have a certain degree of reducibility. Therefore, the binder (PVDF) 
and other organic substances on the spent cathode can be used as reducing agent to perform thermal 
reduction under anaerobic conditions. The composition and structure of cathode sheet used in this 
experiment is shown in Fig. 1. This paper uses the spent cathode of NCM as experimental materials, 
and the in-situ thermal reduction tests are conducted under various conditions. Then, XRD and XPS are 
used to analyze changes in substance type, and valency, and content of elements before and after the 
thermal reduction. Finally, effects of experimental conditions, namely terminal temperature and 
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retention time, on thermal reduction results are further investigated by sulfuric acid leaching tests with 
the same condition. 

 
Fig. 1. Schematic diagram of the composition and structure of the cathode sheet 

2. Experimental  

2.1. Materials and reagents 

Samples used in this research were spent LIBs of 18650(A standard lithium-ion battery model set by the 
Japanese company SONY, where 18 indicates a diameter of 18 mm, 65 indicates a length of 65 mm, and 
0 indicates a cylindrical battery.). First, spent LIBs were immersed in 5wt % sodium chloride solution 
for 24 h for discharge treatment, and dried naturally. Then, spent LIBs were manually disassembled to 
obtain the cathode sheet. The size of the cathode sheet used in the in-situ thermal reduction experiment 
was 10 cm in length and 5 cm in width, and the mass of each sheet was 5 g. The content of each element 
in the spent NCM was measured by inductively coupled plasma mass spectrometry (ICP-MS), and 
results are shown in Table 1. Then, mass ratios among elements were converted to number ratios of 
atoms, and the NCM material was confirmed as LiNi0.5Co0.2Mn0.3O2(NCM523). The binder of the 
cathode and other organic substances were used as reducing substances for in-situ thermal reduction. 
Then the valuable metal elements are leached with sulfuric acid. 

Table1. Main components of waste cathode materials 

Element Li Ni Co Mn 

Mass content/% 7.86  34.38  13.38  16.94  

2.2. Measurement and characterization  

In-situ thermal reduction experiments were conducted in a tube furnace with the controlled atmosphere 
(MXG1200-80, Shanghai Micro-X Furnace). Pyrolysis properties of cathode materials were analyzed by 
the thermogravimetric analysis method (TG, Netzsch STA 449 F5, Germany). Phase characteristics and 
substance type of spent NCM before and after the in-situ thermal reduction were analyzed by X-ray 
diffractometer (XRD, Bruker D8 Advance, Germany). Changes in valency state and content of elements 
in various states were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Escalab 
250Xi, America). ICP-MS measured concentrations of Ni, Co, and Mn in the leaching solution, and the 
leaching efficiency of each element was calculated. 

2.3. Experimental process  

2.3.1. Feasibility study of thermal reduction 

The disassembled cathode sheet was placed in a vacuum tube furnace and subjected to thermal 
reduction under air and nitrogen conditions respectively (heating rate of 10℃/min, thermal reduction 
temperature of 600 ℃, nitrogen and air flow rate of 200 cm3/min, the thermal reduction retention time 
of 120 min). The cathode sheet after the in-situ thermal reduction treatment is crushed and sieved to 
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obtain -0.074 mm NCM material, which is then tested by XRD and XPS to compare the phase and 
valence changes of each element. 

2.3.2. Thermal reduction process under various terminal temperature and retention times 

Pyrolysis characteristics of cathode material derived from spent LIBs were respectively analyzed using 
a thermogravimetric analyzer (NETZSCH, STA 449-F5, Germany, testing condition: temperature rises 
from 30 ℃ to 700 ℃ with heating rate of 10℃/min; N2 was used as shielding gas with an airflow velocity 
of 20 cm3/min). For the in-situ thermal reduction tests, cathode sheet was introduced into a cold furnace 
and heated up then. Cathode sheet was in-situ thermal reduced at different temperature (450 ℃, 500 ℃, 
550 ℃, 600 ℃) for the retention time of 120 min in a vacuum tube furnace under a nitrogen atmosphere 
to confirm the optimum thermal reduction temperature. At the optimum temperature, retention time 
(0 min, 15 min, 30 min, 60 min, 120 min) was changed to achieve the best thermal reduction. 

2.3.3. Acid leaching tests of reduced materials under various conditions 

Reduced products treated by various conditions and raw materials were subjected to the sulfuric acid 
leaching. Experimental conditions of leaching were: sulfuric acid concentration of 4 mol/dm3, leaching 
temperature of 85 ℃, leaching time of 60 min, stirring speed of 300 rpm, and solid-liquid ratio of 0.1 
g/cm3. The leachate was subjected to ICP-MS to measure concentrations of Ni, Co, and Mn, and the 
leaching efficiency was calculated as follows: 

𝐸#̇ =
&'('
)*̇+'

× 100%                                                                           (1) 

where Ei represents the leaching efficiency of Ni, Co, Mn elements, ci is the concentration of metal ions 
in the leaching solution (g/dm3), vi represents the volume of the leaching solution (dm3), mi is the mass 
of the spent NCM523 (g), wi represents the content of the metal ions in the spent NCM523 (%). 

3. Results and discussion  

3.1. Pyrolysis characteristics of cathode material 

The thermal decomposition behavior of cathode material was analyzed with thermogravimetric 
analysis and the TG and DTG curves are shown in Fig. 2. It can be seen that the weight loss process of 
cathode material is mainly divided into three stages, the first stage is 30 ℃-150 ℃ with the weight loss 
rate of 0.63%; the second stage is 150 ℃-350 ℃ with the weight loss rate of 1.37%; the third stage is 350 
℃-600 ℃, and the weight loss rate is 1.60%. The initial mass of cathode material in the TG test is 20.50 
mg, the mass is reduced by 0.55 mg, 0.64 mg, 0.70 mg, and 0.73 mg at 450 ℃, 500 ℃, 550 ℃, and 600 ℃, 
respectively.  So, the organic content in the cathode material is about 3.56%. 

 
Fig. 2. TG and DTG analysis of the cathode material 
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3.2. Feasibility analysis of in-situ thermal reduction 

XRD spectrums of the spent NCM523 before and after the thermal reduction treatment under air and 
nitrogen atmosphere are shown in Fig. 3. These results show that only peaks of LiNixCoyMnzO2 exist in 
the raw spent NCM523, which indicates that Ni, Co, and Mn are in the steady layered structure of 
cathode material. Also, these elements are still in the high valency. This figure demonstrates that the 
products of the spent NCM523 treated in air exhibit the similar spectrum pattern if compared with that 
of raw materials. Hence, it can be concluded that the chemical valency of elements do not change. The 
binder and other organic substances attached to the cathode material burn directly (Wang et al., 2018) 
and do not react with the cathode material. The XRD result of materials after the thermal reduction 
under anaerobic condition indicates the change of layered structure, with the yield of new substance 
and valency decrease of elements. Part of Ni2+ is reduced to simple substances, and the other is in +2 
valence form. Co3+ is produced to simple substances Co, and Mn4+ is changed to Mn2+. 

To further characterize the effect of organic substances on the valency reduction of elements in 
NCM523 after the thermal reduction in anaerobic, narrow scanning of Ni, Co, and Mn were analyzed 
by XPS. The split peak fitting results of these three elements are described in Fig. 4, and the first figure 
indicates that the spent NCM523 and material after thermal treatment in air are in the form of Ni2+ at 
binding energies of Ni2p1/2 and Ni2p3/2. However, the elemental Ni is produced after the thermal 
reduction under anaerobic condition. As shown in Fig. 4(b), the spent NCM523 and material after 
thermal treatment in the air are present in the form of Co3+ at binding energies of Co2p1/2 and Co2p3/2. 
Nevertheless, for the thermal reduction under N2, Co3+ is reduced to elemental Co. Similarly, in Fig. 4(c), 
the valency of Mn is reduced from +4 to +2 at the binding energy of Mn2p1/2 and Mn2p3/2 after the 
thermal reduction under anaerobic condition. Moreover, a small amount of elemental Mn is produced.  

 
Fig. 3. (a)XRD spectrums of spent NCM523, (b) XRD spectrum of spent NCM523 after heat treatment in air at 

600℃, 120min, (c) XRD spectrum of spent NCM523 after heat treatment in nitrogen at 600℃, 120min 

In summary, the valencies of Ni, Co, and Mn do not change during thermal treatment under air 
condition, which indicates the same substance type with the raw spent NCM523. Organic films on the 
surface of NCM523 are oxidized and burned during the thermal treatment process, without interaction 
with NCM523. In the thermal reduction of anaerobic condition, the high-valency element is reduced to 
the low-valent form. Therefore, organic substances in cathode material can result in the in-situ thermal 
reduction in anaerobic condition, with the destruction of original structure of NCM523 and reduction 
of element valency. 

3.3. Effect of terminal temperature and retention time on the in-situ thermal reduction 

Previous exploration has verified the feasibility of thermal reduction of NCM523 by the attached binder 
and organic substances. As the terminal temperature has an essential effect on the reduction result, 
thermal reduction tests are designed with the terminal temperature of 450 ℃, 500 ℃, 550 ℃, and 600 ℃, 
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Fig. 4. Comparison of chemical valency of (a) Ni2p, (b) Co2p, and (c) Mn2p by XPS narrow scan data of spent 

NCM523, and spent NCM523 heat treatment in air and nitrogen at 600℃, 120min 
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and retention time is fixed for 2 h. Fig. 5 shows the XRD results date of spent NCM523 before and after 
the thermal reduction under various temperatures. Compared with the untreated material, the spent 
NCM523 treated at 450 ℃ and 500 ℃ for 120 minutes remains substantially unchanged. When the 
terminal temperature rises to 550 ℃, the LiNixCoyMnzO2 decomposes as Li2CO3, NiO, MnO, elemental 
Ni and Co. This indicates that the reduction reaction has occurred. With the further increase of the 
terminal temperature, peaks of new substances decomposed from peaks of LiNixCoyMnzO2 after the 
thermal reduction is pronounced, which means that the reduction reaction proceeds more thoroughly. 
Hence, the element valency decreases, with the generation of elemental Ni and Co, and MnO. Table2 
depicts the contents of element Ni, Co and Mn of various valencies in spent NCM523 before and after 
the thermal reduction at different temperatures. With the terminal temperature levels as 450 ℃ and 500 
℃, the element valency and the content of each element stay the same. For the thermal reduction 
treatment at 550℃, 22.59% of Ni2+ is reduced to elemental Ni, 30.97% of Co2+ is reduced to elemental 
Co, and the content of Mn4+ decreases by 77.77%. When the temperature rises to 600 °C, the content of 
elemental Ni increases to 32.95% and all Co3+ is reduced to elemental Co. Mn4+ is almost completely 
reduced to Mn2+, and only 8.59% of elemental Mn is produced. The conclusions above are consistent 
with the analysis results of the XRD diffraction pattern except of elemental Mn presence, because the 
content of elemental Mn is low and is not found in the XRD diffraction pattern. 

 

Fig. 5. (a) XRD diffraction pattern of spent NCM523, (b-e) XRD diffraction pattern of spent NCM523 after thermal 
reduction at 450 ℃, 500 ℃, 550 ℃ and 600 ℃ for 120 min in nitrogen 

Table 2. Contents of elements of various valencies in spent NCM523 before and after the thermal reduction at 
various temperatures 

Sample 
Mass content/% 

Ni2+ Ni Co3+ Co Mn4+ Mn2+ Mn 
Spent NCM 100.00  0.00  100.00  0.00  100.00  0.00  0.00  

450℃ 100.00  0.00  100.00  0.00  100.00  0.00  0.00  
500℃ 100.00  0.00  100.00  0.00  100.00  0.00  0.00  
550℃ 77.41  22.59  69.03  30.97  22.23  77.77  0.00  
600℃ 69.05  30.95  0.00  100.00  0.00  91.41  8.59  

Besides the terminal temperature, the retention time also influences the thermal reduction result. 
Fig. 5 describes the XRD results of raw spent NCM523, and products reduced in various retention times 
(0 min, 15 min, 30 min, 60 min, and 120 min) at 600 ℃. It should be noted that the thermal reduction test 
of retention time of 0 min undergoes the same heating-up process and materials are removed out after 
the terminal temperature of 600 ℃ is reached. The curves in Fig. 6 illustrate that the spent NCM523 with 
the retention time of 0 min has the same substance type as that of the untreated one. When the retention 
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time is 15 min, the layered structure starts to change, and the   element valency is initially reduced. This 
demonstrates that the thermal reduction reaction mainly occurs within the constant temperature stage, 
and there is no noticeable change for the substance type during the heating-up process of 600 ℃. Table 
3 shows the contents of elements of various valencies in the spent NCM523 after the thermal reduction 
treatment at different retention times of terminal temperature. Elemental Ni is produced at the retention 
time of 15 min, and its content increases from 18.62% at 15 min to 32.95% at 120 min. For the element 
Co, if the retention time is 15 min, Co3+ is reduced to Co2+ of 75.01% and elemental Co of 24.99%. As the 
retention time increases, Co3+ is finally reduced to elemental Co at the retention time of 120 min. 64.37% 
of Mn4+ is reduced to Mn2+ when the retention time at 600℃ is 15 min. With the increase of retention 
time, the content of Mn4+ decreases gradually. At 120 min, Mn4+ is finally reduced to Mn2+ of 91.41% 
and elemental Mn of 8.59%. The changes of the valencies in elements Ni, Co, and Mn under different 
retention times also confirm the variation of substance type. 

 
Fig. 6. XRD diffractogram of (a) untreated spent NCM523 and products after thermal reduction at 600 °C for 

different times (b) 0 min, (c) 15 min, (d) 30 min, (e) 60 min, (f) 120 min 

Table 3. Contents of elements of various valencies in spent NCM 523 after thermal reduction at different retention 
times of 600℃ 

Sample 
Mass content/% 

Ni2+ Ni Co3+ Co2+ Co Mn4+ Mn2+ Mn 
0min 100.00  0.00  100.00  0.00  0.00  100.00  0.00  0.00  
15min 81.38  18.62  0.00  75.01  24.99  35.63  64.37  0.00  
30min 79.27  20.73  0.00  74.11  25.89  30.68  69.32  0.00  
60min 68.74  31.26  0.00  55.17  44.83  28.58  71.42  0.00  
120min 67.05  32.95  0.00  0.00  100.00  0.00  91.41  8.59  

3.4. Analysis of the reaction of electrode materials during thermal reduction 

The pyrolysis characteristics of the organic binder in the electrode material are shown in the analysis of 
potential chemical reactions. The first is the pyrolysis process of the organic binder PVDF. This process 
occurs between 450-550℃. PVDF decomposes into HF and pyrolysis residual carbon and various 
fluorobenzenes (as shown in chemical equation (2)). Secondly, due to the certain reduction 
characteristics of HF gas, part of LiNi0.5Co0.2Mn0.3O2 can be reduced to NiO, Co, MnO and LiF at 600°C 
(as shown in chemical equation (3)). At the same time, pyrolysis residual carbon and conductive agent 
can also reduce LiNi0.5Co0.2Mn0.3O2 to CoO and Li2O. Finally, NiO reacts with residual carbon to 
form Ni elemental substance (as shown in chemical equation (4)).  

−(CF2CH2) −7→ HF ↑ +C(Pyrolysis	residual	carbon) + R(Fluorobenzene)                         (2) 
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12HF	 + 	5LiNiO.QCoO.RMnO.TOR = 2.5NiO	 + 	Co	 + 	1.5MnO	 + 	5LiF	 + 	6HRO + 3.5FR ↑		                (3) 
1.75C	 + 5LiNiO.QCoO.RMnO.TOR 	= 2.5LiRO	 + 	2.5NiO	 + 	Co + 	1.5MnO+ 1.75COR ↑	                   (4) 

2NiO	 + 	C	 = 2Ni + COR ↑                                                                   (5) 

3.5. Leaching experiments of thermal reduction products 

Except for the discussion of thermal reduction results by instrumental analyses, products of various 
thermal reduction conditions are subjected to sulfuric acid leaching tests with the same experimental 
parameters (H2SO4 concentration of 4 mol/dm3, leaching temperature of 85 ℃, leaching time 60 min, 
stirring speed of 300 rpm, solid-liquid ratio of 0.1 g/cm3). Table 4 shows the leaching efficiencies of Ni, 
Co, and Mn in raw spent NCM523 and materials after thermal reduction at various terminal 
temperatures for 120 min. To estimate the experimental error, this paper conducted repeat tests. The 
leaching tests of samples for each terminal temperature were repeated three times. The 95% confidence 
interval is the mean value of ±95% confidence limit. This table indicates that nearly all the experimental 
values are in the 95% confidence interval range. Meanwhile, the 95% confidence limit is 10% of the mean 
value (confidence limits are based on standard deviation). The relatively high repeatability of 
experimental data illustrates the validity of leaching tests. Fig. 7 shows the change trend of the leaching 
efficiency of Ni, Co and Mn in the raw spent NCM523 and the thermally reduced NCM material after 
the in-situ thermal reduction for 120 minutes at different terminal temperatures. Leaching efficiencies 
of Ni, Co, and Mn increase with the increase of terminal temperature (temperature for the in-situ 
thermal reduction tests). Organic materials such as binder are decomposed at those temperatures, and 
the surface of spent NCM523 is exposed, which benefits the leaching process (Zhang, G. et al., 2018). 
That is also why the leaching efficiencies of the treated spent NCM523 at low terminal temperature (450 
℃ and 500 ℃) are higher than those of the raw one. For the high-temperature range (550 ℃ and 600 ℃), 
the in-situ thermal reduction reaction caused by decomposition products of organic substances breaks 
the layered structure of LiNixCoyMnzO2 and promotes the decrease of element valency. For the in-situ 
thermal reduction of high terminal temperature, chemical bond energies among elements become weak, 
and elements of low valency are easy to be leached in the acid solution. The change of leaching efficiency 
is more obvious for Mn of NCM523 treated at 550 ℃ and 600 ℃ than those of others. For the thermal 
reduction test at 600 ℃, each element’s leaching efficiency is the highest, and the average value of 
leaching efficiencies of Ni, Co and temperature of in-situ thermal reduction is 600 ℃. 

 
Fig. 7. Leaching efficiencies of Ni, Co and Mn elements of raw spent NCM523 and cathode material after the in-

situ thermal reduction for 120 minutes at different terminal temperatures 
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Table 4. Leaching efficiencies of elements of products treated at different temperatures and confidence analyses of 
repeat experiments 

Temperature/
℃ 

Element 
type 

Leaching efficiency/% 95% 
Confiden
ce limit 

95% 
Confidence 
limit to the 

mean 
Repeat1 Repeat2 Repeat3 Mean 

Spent NCM 
Ni 56.02  51.70  52.46  53.39  3.69  6.92  
Co 54.63  50.22  50.99  51.95  3.77  7.26  
Mn 0.70  0.71  0.73  0.71  0.02  3.43  

450  
Ni 63.88  65.06  65.97  64.97  1.68  2.58  
Co 63.10  63.46  64.82  63.79  1.45  2.28  
Mn 0.86  0.89  0.85  0.87  0.03  4.02  

500  
Ni 71.61  74.27  73.19  73.02  2.14  2.94  
Co 71.73  72.66  71.13  71.84  1.23  1.72  
Mn 1.25  1.40  1.37  1.34  0.13  9.48  

550  
Ni 88.23  85.71  85.33  86.42  2.52  2.92  
Co 87.55  84.07  83.59  85.07  3.46  4.07  
Mn 53.02  56.35  54.86  54.74  2.67  4.88  

600  
Ni 99.23  99.04  99.01  99.09  0.19  0.19  
Co 99.15  96.98  98.10  98.08  1.73  1.77  
Mn 98.97  97.52  98.15  98.21  0.09  0.09  

Table 5 shows each element’s leaching efficiency under the thermal reduction temperature of 600 ℃ 
for 0 min, 15 min, 30 min, 60 min, and 120 min. To estimate the experimental error, this paper also 
conducted repeat tests. The leaching conditions are the same as before. The relatively high repeatability 
of experimental data in Table 5 illustrates the validity of leaching tests. Fig. 8 shows the change trend of 
the leaching efficiency of Ni, Co and Mn under the thermal reduction temperature of 600 ℃ for 0 min, 
15 min, 30 min, 60 min, and 120 min. It can be seen from the figure that the error on the histogram 
representing the leaching efficiency of each element is still small, which further verifies the good repeat- 

 
Fig. 8. Leaching efficiencies of Ni,Co and Mn elements of raw spent NCM523 and products treated at 

different temperature retention times 
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Table 5. Leaching efficiencies of elements of products treated at different temperature retention times of 600℃ 
and confidence analyses of repeat experiments. 

Temperature 
retention 
time of 

600℃/min 

Element 
type 

Leaching efficiency/% 95% 
Confidence 

limit 

95% 
Confidence 
limit to the 

mean 
Repeat1 Repeat2 Repeat3 Mean 

0  
Ni 78.23  77.93  78.06  78.07  0.24  0.31  
Co 77.78  69.94  69.92  72.55  7.25  10.00  
Mn 1.15  1.19  1.07  1.14  0.10  8.59  

15  
Ni 88.62  85.37  88.92  87.64  3.15  3.59  
Co 89.67  87.23  87.56  88.15  2.12  2.40  
Mn 72.52  75.57  73.51  73.87  2.49  3.38  

30  
Ni 91.10  89.01  90.44  90.18  1.71  1.90  
Co 91.46  87.44  85.28  88.06  5.02  5.70  
Mn 80.02  79.23  81.37  80.21  1.73  2.16  

60  
Ni 93.96  90.25  89.84  91.35  3.63  3.98  
Co 95.37  88.94  89.10  91.14  5.87  6.44  
Mn 87.15  84.30  85.15  85.53  2.34  2.74  

120  
Ni 99.23  99.04  99.01  99.09  0.19  0.19  
Co 99.15  96.98  98.10  98.08  1.73  1.77  
Mn 98.97  97.52  98.15  98.21  0.09  0.09  

ability of the experiment. It should be noted that the longer retention time, the longer reduction reaction 
time. Hence, the content of elements with the reduction of valency increases. Results in Table 5 indicate 
that leaching efficiency of each element increases with the retention time. When the retention time is 
120 minutes, the best results of in-situ thermal reduction are achieved, with the highest leaching 
efficiency. Another interesting result is that the leaching efficiencies of elements for the terminal 
temperature of 600℃ and retention time of 0 min are higher than those of low temperature (450 ℃ and 
500 ℃) and retention time of 120 min. Since there is a 10min heating-up process from 500℃ to 600℃, 
some weak reduction reaction may occur during this process, and result in the valency decrease of part 
of elements. 

4. Conclusions 

A method of in-situ thermal reduction by the binder and other organic substances of the spent NCM523 
in the nitrogen atmosphere is proposed to reduce the element valency for the improvement of leaching 
efficiency. Conclusions of this paper are as follows: 

1. Exploratory experiments show that in the air atmosphere of 600 ℃, organic films on the surface of 
spent NCM523 burn directly. Valency of elements in cathode materials do not change. While under the 
nitrogen atmosphere, the in-situ thermal reduction reaction of the spent NCM523 occurs with the 
decrease of element valency (illustrated by XPS) and generation of new metal substances (analyzed by 
XRD). 

2. For conditions of fixed retention time of terminal temperature, the higher terminal temperature 
can accelerate the process of the in-situ thermal reduction reaction, with the higher yield of the low-
valency element. After the terminal reduction at 550 ℃, the original chemical bonds among elements of 
spent NCM523 are destroyed, and the element valency decreases. If the temperature further increases 
to 600 ℃, 32.95% of elemental Ni will be generated. All of Co3+ is reduced to elemental Co. Mn4+ is 
almost completely reduced to Mn2+, and 8.59% of elemental Mn is yielded. With the increase of the 
terminal temperature, the leaching efficiencies of Ni, Co, and Mn increase with the decrease of element 
valency. Leaching efficiencies of all elements reach the highest at 600 ℃. 

3. The retention time of the final temperature has a decisive influence on the in-situ thermal 
reduction process. Thermal reduction mainly occurs in the high-temperature section, and there is no 
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obvious change in the substance type during the heating-up process. If the retention time is 15 min, the 
layered structure will be destroyed, and element valency will be reduced. At this time, 18.62% of 
elemental Ni and 24.99% of elemental Co will be produced. While retention time increases to 120 min, 
reduction reaction proceeds more completely, and elements of Ni, Co, and Mn exist in a low-valent 
form. At the terminal temperature of 600 ℃ and retention time of 120min, the best thermal reduction 
results are achieved, and the leaching efficiencies of Ni, Co, and Mn also reach optimal values, which 
are 99.04%, 96.98% and 97.52%, respectively.   
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