Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A Raman lidar system is able to detect the range of gas distribution and measure the hydrogen gas concentration remotely. This paper discusses the development of a photon counting Raman lidar system for remotely measuring the hydrogen gas concentration. To verify the developed photon counting Raman lidar system, experiments were carried out in outdoor conditions. As the results indicate, the developed photon counting Raman lidar system is possible to measure 0.66 to 100 vol% hydrogen gas concentrations at a distance of 30 m. In addition, the measuring average error measured 0.54% and the standard deviation is 2.42% at a distance of 30 m.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
37--49
Opis fizyczny
Bibliogr. 13 poz, rys., tab.
Twórcy
autor
- Division of Quantum Optics, Korea Atomic Energy Research Institute, Deajeon 34507, Korea
autor
- Division of Quantum Optics, Korea Atomic Energy Research Institute, Deajeon 34507, Korea
autor
- Division of Nuclear Robot and Diagnosis, Korea Atomic Energy Research Institute, Deajeon 34057, Korea
Bibliografia
- [1] SHIINA T., Hydrogen gas detection by mini-Raman lidar, [In] Ionizing Radiation Effects and Applications, [Ed.] B. Djezzar, InTech, 2018, pp. 41–60, DOI:10.5772/intechopen.74630.
- [2] ROSEMONT I.L., BARILO N., Wide Area Sensor Needs, DOE Hydrogen Sensor Workshop, Rosemont, IL, June 8, 2011.
- [3] WU S.H., ZHOU H., HAO M.M., WEI X.B., LI S.B., YU H., WANG X.R., CHEN Z., Fast response hydrogen sensors based on anodic aluminum oxide with pore-widening treatment, Applied Surface Science 380, 2016, pp. 47–51, DOI:10.1016/j.apsusc.2016.02.087.
- [4] YAMAZOE N., Toward innovations of gas sensor technology, Sensors and Actuators B: Chemical 108(1–2), 2005, pp. 2–14, DOI:10.1016/j.snb.2004.12.075.
- [5] SHEN Y.B., CAO X.M., ZHANG B.Q., WEI D.Z., MA J.W., LIU W.G., HAN C., SHEN Y.T., Synthesis of SnO2 nanorods and application to H2 sensor, Journal of Alloys and Compounds 593, 2014, pp. 271–274, DOI:10.1016/j.jallcom.2014.01.038.
- [6] KOROTCENKOV G., CHO B.K., Engineering approaches to improvement of conductometric gas senor parameters. Part 2: decrease of dissipated (consumable) power and improment stability and reliability, Sensors and Actuators B: Chemical 198, 2014, pp. 316–341, DOI:10.1016/j.snb.2014.03.069.
- [7] COMINI E., BARATTO C., CONCINA I., FAGLIA G., FALASCONI M., FERRONI M., GALSTYAN V., GOBBI E., PONZONI A., VOMIERO A., ZAPPA D., SBERVEGLIERI V., SBERVEGLIERI G., Metal oxide nanoscience and nanotechnology for chemical sensors, Sensors and Actuators B: Chemical 179, 2013, pp. 3–20, DOI:10.1016/j.snb.2012.10.027.
- [8] VEREM’EV R.N., PRIVALOV V.E., SHEMANIN V.G., Optimization of a semiconductor lidar for detecting atmospheric molecular iodine and hydrogen, Technical Physics 45(5), 2000, pp. 636–640, DOI:10.1134/1.1259691.
- [9] BALL A.J., Investigation of Gaseous Hydrogen Leak Detection Using Raman Scattering and Laser-Induced Breakdown Spectroscopy, M.S. Thess, University of Florida, 2005.
- [10] ASAHI I., SUGIMOTO S., NINOMIYA H., FUKUCHI T., SHIINA T., Remote sensing of hydrogen gas concentration distribution by Raman lidar, Proceedings of SPIE 8526, 2012, article 85260X, DOI:10.1117/12.977348.
- [11] NINOMIYA H., YAESHIMA S., ICHIKAWA K., FUKUCHI T., Raman lidar system for hydrogen gas detection, Optical Engineering 46(9), 2007, article 094301, DOI:10.1117/1.2784757.
- [12] CHOI I.Y., BAIK S.H., PARK N.G., KANG H.Y., KIM J.H., Improvement of the measuring accuracy of the raman lidar for remote detection of the hydrogen gas, International Journal of Precision Engineering and Manufacturing 19(7), 2018, pp. 967–973, DOI:10.1007/s12541-018-0114-z.
- [13] LIMERY A., CEZARD N., FLEURY D., GOULAR D., PLANCHAT C., BERTRAND J., HAUCHECORNE A., Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management, Optics Express 25(24), 2017, pp. 30636–30641, DOI:10.1364/OE.25.030636.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eef9aca7-ce0b-4a5e-a965-30a6ad30047e