PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of trapezoidal shapes on the thermal buckling behaviour of perforated composite plates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal buckling study on the symmetric laminated composite trapezoidal plate with a circular cutout subjected to a uniform increase in temperature for various boundary conditions is explored in this paper. In a mathematical model, the first-order shear deformation principle is employed in accordance with the variational energy system. For acquiring the thermal buckling temperature, a nine-node heterosis plate relation has been used in the finite element formulation. By correlating the present findings with accessible literature, the effectiveness of the present formulation is verified. The impact of different parameters, such as trapezoidal shape, cutout size, ply-orientation, plate edge conditions and plate width to thickness ratio have been considered to study the effect of each parameters on the buckling characteristics of plate under various temperatures. It is observed from the study that each parametric investigation significantly affect the thermal buckling behaviour of trapezoidal plates.
Rocznik
Strony
10--26
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, B.M.S College of Engineering Bengaluru 560019, Karnataka, India
  • Department of Mechanical Engineering, Government Polytechnic College , B agepalli 56 1207, Karnataka , India
autor
  • Department of Civil Engineering, B.M.S College of Engineering Bengaluru 560019, Karnataka, India
autor
  • Department of Mechanical Engineering, B.M.S College of Engineering Bengaluru 560019, Karnataka, India
Bibliografia
  • 1. Shiau L.C, Kuo S.Y, Chen C.Y.: Thermal buckling behaviour of composite laminated plates. Composite Structures 92 (2010) 508–514.
  • 2. Mathew T.C, Singh G., Rao G.V.: Thermal buckling of cross-ply composite laminates. Computers & Structures 42 (2) (1992) 281-287.
  • 3. Manickam G., Bharath A., Das A.N., Chandra A, Barua P.: Thermal buckling behaviour of variable stiffness laminated composite plates. Materials Today Communications 16 (2018) 142-151.
  • 4. Biswal M., Sahu S., Asha A.: Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results. Composites Part B: Engineering 98 (2016) 108-119.
  • 5. Palani G.S., Iyer N.R., Rao T.V.R.: An efficient finite element model for static and vibration analysis of eccentrically stiffened plates/shells. Computers & Structures 43 (4) (1992) 651-661.
  • 6. Panda H., Sahu S., Parhi P.: Hygrothermal effects on free vibration of delaminated woven fiber composite plates–Numerical and experimental results. Composite Structures 96 (2013) 502-513.
  • 7. Behera R.K., Sharma N., Parida S.K.: Finite element analysis of buckling, free vibration and flexure of clamped laminated composite plates in variable thermal environment. Advances in Mechanical Engineering (2020) 1151-1161.
  • 8. Jeyaraj P.: Buckling and free vibration behaviour of an isotropic plate under non-uniform thermal load. International Journal of Structural Stability and Dynamics 13 (3) (2013) 1250071.
  • 9. Sai Ram K.S, Sinha P.K.: Hygrothermal effects on the bending characteristics of laminated composite plate. International Journal of Computers and Structures 40 (4) (1991) 1009–1015.
  • 10. Twinkle C.M., Pitchaimani J., Rajamohan V.: Free vibration modes of rectangular plate under non-uniform heating: An experimental investigation. Structures 28 (2020) 1802-1817.
  • 11. Yang X., Fei Q., Wu S., Li Y.: Thermal buckling and dynamic characteristics of composite plates under pressure load, Journal of Mechanical Science and Technology 34 (8) (2020) 3117-3125.
  • 12. Abidaa M., Gehringan F., Marsb J., Viveta A., Dammakb F., Haddarc M.: Hygro-mechanical coupling and multiscale swelling coefficients assessment of flax yarns and flax/epoxy composites. Composites Part A 136 (2020) 105914 .
  • 13. Gayen D., Roy T.: Hygro-thermal effects on stress analysis of tapered laminated composite Beam. International Journal of Composite Materials 3 (3) (2013) 46-55.
  • 14. Biswal M., Sahu S.K., Asha A.V., Namita Nanda.: Hygro-thermal effects on buckling of composite shell-experimental and FEM results. Steel and Composite Structures 22 (6) (2016) 1445-1463.
  • 15. Patel B.P., Ganapathi M, Makhecha D.P.: Hygro-thermal effects on the structural behaviour of thick composite laminates using higher-order theory. Composite Structures 56 (2002) 25–34.
  • 16. Sahin O.S.: Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology 65 (2005) 1780–1790.
  • 17. Chikh A., Tounsi A., Hebali H., Mahmoud S.R.: Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems 19 (3) (2017) 289-297.
  • 18. Chandrashekhara K.: Thermal buckling of laminated plate using a shear flexible finite element. Finite Elements in Analysis and Design 12 (1992) 51-61.
  • 19. Sun L.X, Hsu T.R.: Thermal buckling of laminated composite plates with transverse shear deformation. Computers & Structures 36 (5) (1990) 883–9.
  • 20. Chockalingam S., Mathew T.C., Singh G., Rao G.V.: Critical temperatures of hybrid laminates using finite elements. Computers & Structures 43 (5) (1992) 995–8.
  • 21. Thangaratnam K.R., Ramachandran J.: Thermal buckling of composite laminated plates. Computers & Structures 32 (1989) 1117–24.
  • 22. Chen L.W., Lin P.D., Chen L.Y.: Thermal buckling behaviour of thick composite laminated plates under non-uniform temperature distribution. Computers & Structures 41 (1991) 637–45.
  • 23. Kallannavar V., Kumaran B., Kattimani S.C.: Effect of temperature and moisture on free vibration characteristics of skew laminated hybrid composite and sandwich plates. Thin–Walled Structures 157 (2020) 107113.
  • 24. Thai C.H., Kulasegaram S., Tran L.V., Nguyen-Xuan H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Computers & Structures 141 (2014) 94-112.
  • 25. Nguyen T.N, Thai C.H., Nguyen-Xuan H.: On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach. International Journal of Mechanical Sciences 110 (2016) 242-255.
  • 26. Nguyen T.N., Ngo T.D., Nguyen-Xuan H.: A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation. Computer Methods in Applied Mechanics and Engineering 326 (2017) 376–401.
  • 27. Bathe K.J.: 2014. Finite Elements Procedures. Second Edi. Prentice Hall, Pearson Education, Inc.
  • 28. Maharudra, B. Arya, Rajanna T.: Effect of ply-orientation and boundary conditions on the vibrational characteristics of laminated composite plates using HOSDT, Materials Today: Proceedings. 20 (2020) 134–139.
  • 29. Rajanna T., Banerjee S., Desai Y.M., Prabhakara D. L.: Effects of partial edge loading and fibre configuration on vibration and buckling characteristics of stiffened composite plates. Latin American Journal of Solids and Structures 13 (2016) 854-879.
  • 30. Muddappa P.P.Y., Rajanna T., Giridhara G.: Effects of different inter-laminar hybridization and localized edge loads on the vibration and buckling behaviour of fiber metal composite laminates. Composites Part C 4 (2021) 100084.
  • 31. Subash Chandra K.S., Rajanna T., Venkata Rao K.: A parametric study on the effect of elliptical cutouts for buckling behaviour of composite plates under non-uniform edge loads. Latin American Journal of Solids and Structures 17 (2020) 1-15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eef88420-6668-40fc-a7e9-1717801ae759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.