Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Infrared reflection-absorption spectra (IRRAS) at the near-normal incidence of polystyrene films from benzene, toluene, and chloroform solutions were analyzed in this paper. The appearance of the spectrum can be affected so that false conclusions can be drawn about the positions and the shape of the absorption bands. The knowledge of these influences of residual solvents in the polymer film is important for the correct interpretation of the reflection-absorption spectra. Unlike other approaches, a single reflection at a 20° incidence angle was used. A new drop-carting technique was used for the deposition of polymer film solutions on metal mirrors. Reflection-absorption spectra at a near-normal incidence angle were obtained using a dispersive infrared spectrometer.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Department of Engineering and Management, Politehnica University Timisoara, St. Revolutiei 5, Hunedoara, 331128, Romania
autor
- Department of Engineering and Management, Politehnica University Timisoara, St. Revolutiei 5, Hunedoara, 331128, Romania
autor
- Department of Engineering and Management, Politehnica University Timisoara, St. Revolutiei 5, Hunedoara, 331128, Romania
Bibliografia
- [1] ALLARA D., STAPLETON J., Methods of IR Spectroscopy for Surfaces and Thin Films, [In] Surface Science Techniques, G. Bracco, B. Holst [Eds.], Springer Series in Surface Sciences, Vol. 51, Springer, Berlin, Heidelberg, 2013: 59–98, DOI: 10.1007/978-3-642-34243-1_3.
- [2] PALMER K.F., WILLIAMS M.Z., Determination of the optical constants of a thin film from transmittance measurements of a single film thickness, Applied Optics 24(12), 1985: 1788–1798, DOI: 10.1364/AO.24.001788.
- [3] FRINGELI U.P., ATR and reflectance IR spectroscopy. Applications, [In] Encyclopedia of Spectroscopy and Spectrometry, J.C. Lindon [Ed.], Elsevier, 1999: 58–75, DOI: 10.1006/rwsp.2000.0013.
- [4] YAMAMOTO K., ISHIDA H., Optical theory applied to infrared spectroscopy, Vibrational Spectroscopy 8(1), 1994: l–36, DOI: 10.1016/0924-2031(94)00022-9.
- [5] GRAF R.T., KOENIG J.L., ISHIDA H., Optical constant determination of thin polymer films in the infrared, Applied Spectroscopy 39(3), 1985: 405–408, DOI: 10.1366/0003702854248539.
- [6] YAMAMOTO K., ISHIDA H., Interpretation of reflection and transmission spectra for thin films: reflection, Applied Spectroscopy 48(7), 1994: 775–787, DOI: 10.1366/0003702944029839.
- [7] ISHINO Y., ISHIDA H., FT-IR external reflection spectroscopy at Brewster’s angle, Applied Spectroscopy 46(3), 1992: 504–509, DOI: 10.1366/0003702924125195.
- [8] MAYERHÖFER T.G., IVANOVSKI V., POPP J., Infrared refraction spectroscopy – Kramers–Kronig analysis revisited, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 270, 2022: 120799, DOI: 10.1016/j.saa.2021.120799.
- [9] ROCHA W.R.M., PILLING S., Determination of optical constants n and k of thin films from absorbance data using Kramers–Kronig relationship, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 123, 2014: 436–446, DOI: 10.1016/j.saa.2013.12.075.
- [10] UMEMURA J., Reflection–absorption spectroscopy of thin films on metallic substrates, [In] Handbook of Vibrational Spectroscopy, J.M. Chalmers, P.R. Griffiths [Eds.], John Wiley and Sons, New York, 2002: 982–998, DOI: 10.1002/0470027320.s2202.
- [11] PALMER K.F., WILLIAMS M.Z., BUDDE B.A., Multiply subtractive Kramers–Kronig analysis of optical data, Applied Optics 37(13), 1998: 2660–2673, DOI: 10.1364/AO.37.002660.
- [12] YOSHINOBU J., Infrared reflection–absorption spectroscopy, [In] Compendium of Surface and Interface Analysis, The Surface Science Society of Japan [Ed.], Springer Nature, Singapore 2018.
- [13] TRENARY M., Reflection absorption infrared spectroscopy and the structure of molecular adsorbates on metal surfaces, Annual Review of Physical Chemistry 51(1), 2000: 381–403, DOI: 10.1146/annurev.physchem.51.1.381.
- [14] FRANCIS S.A., ELLISON A.H., Infrared spectra of monolayers on metal mirrors. Journal of the Optical Society of America 49(2), 1959: 131–138, DOI: 10.1364/josa.49.000131.
- [15] GREENLER R.G., Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface, The Journal of Chemical Physics 50(5), 1969: 1963–1968, DOI: 10.1063/1.1671315.
- [16] RABOLT J.F., JURICH M., SWALEN J.D., Infrared reflection-absorption studies of thin films at grazing incidence, Applied Spectroscopy 39(2), 1985: 269–272, DOI: 10.1366/0003702854249015.
- [17] ALLARA D.L., The study of thin polymer films on metal surfaces using reflection-absorption spectroscopy: oxidation of poly(1-butene) on gold and copper, [In] Characterization of Metal and Polymer Surfaces, Lieng-Huang Lee [Ed.], Academic Press, 1977: 193–206.
- [18] BERTIE J.E., Glossary of terms used in vibrational spectroscopy, [In] Handbook of Vibrational Spectroscopy, J.M. Chalmers, P.R. Griffiths [Eds.], John Wiley & Sons, Chichester, 2002: 1–49, DOI: 10.1002/0470027320.s8401.
- [19] JITIAN S., BRATU I., Determination of optical constants of polymethyl methacrylate films from IR reflection-absorption spectra, AIP Conference Proceedings 1425, 2012: 26–29, DOI: 10.1063/1.3681958.
- [20] BERDIE A.D., BERDIE A.A., JITIAN S., The degradation of thin poly(methyl methacrylate) films subjected to different destructive treatments, Journal of Polymer Research 28, 2021: 60, DOI: 10.1007/s10965-020-02390-0.
- [21] FOWLER P.D., RUSCHER C., MCGRAW J.D., FORREST J.A., DALNOKI-VERESS K., Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films, The European Physical Journal E 39, 2016: 90, DOI: 10.1140/epje/i2016-16090-9.
- [22] DE GENNES P.G., Solvent evaporation of spin cast films: “crust” effects, The European Physical Journal E 7, 2002: 31–34, DOI: 10.1140/epje/i200101169.
- [23] BORMASHENKO E., BORMASHENKO Y., FRENKEL M., Formation of hierarchical porous films with breath-figures self-assembly performed on oil-lubricated substrates, Materials 12(18), 2019: 3051, DOI: 10.3390/ma12183051.
- [24] PERLICH J., KÖRSTGENS V., METWALLI E., SCHULZ L., GEORGII R., MÜLLER-BUSCHBAUM P., Solvent content in thin spin-coated polystyrene homopolymer films, Macromolecules 42(1), 2009: 337–344, DOI: 10.1021/ma801878j.
- [25] ZHANG X., YAGER K.G., KANG S., FREDIN N.J., AKGUN B., SATIJA S., DOUGLAS J.F., KARIM A., JONES R.L., Solvent retention in thin spin-coated polystyrene and poly(methyl methacrylate) homopolymer films studied by neutron reflectometry, Macromolecules 43(2), 2010: 1117–1123, DOI: 10.1021/ma902168w.
- [26] KARIMI M., TASHVIGH A.A., ASADI F., ASHTIANI F.Z., Determination of concentration-dependent diffusion coefficient of seven solvents in polystyrene systems using FTIR-ATR technique: Experimental and mathematical studies, RSC Advances 6(11), 2016: 9013–9022, DOI: 10.1039/c5ra25244j.
- [27] BALAKRISHNAN R.K., GURIA C., Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution, Polymer Degradation and Stability 92(8), 2007: 1583–1591, DOI: 10.1016/j.polymdegradstab.2007.04.014.
- [28] FARAVELLI T., PINCIROLI M., PISANO F., BOZZANO G., DENTE M., RANZI E., Thermal degradation of polystyrene, Journal of Analytical and Applied Pyrolysis 60(1), 2001: 103–121, DOI: 10.1016/S0165-2370(00)00159-5.
- [29] SELEEM S., HOPKINS M., OLIVIO J., SCHIRALDI D.A., Comparison of thermal decomposition of polystyrene products vs. bio-based polymer aerogels, The Ohio Journal of Science 117(2), 2017: 50–60, DOI: 10.18061/ojs.v117i2.5828.
- [30] KAPLAN S.G., HANSSEN L.M., EARLY E.A., NADAL M.E., ALLEN D., Comparison of near-infrared transmittance and reflectance measurements using dispersive and Fourier transform spectrophotometers, Metrologia 39(2), 2002: 157–164, DOI: 10.1088/0026-1394/39/2/5.
- [31] PEIRS A., SCHEERLINCK N., TOUCHANT K., NICOLAI B., PH—postharvest technology: Comparison of Fourier transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements, Biosystems Engineering 81(3), 2002: 305–311, DOI: 10.1006/bioe.2001.0040.
- [32] GARCÍA M.T., GRACIA I., DUQUE G., DE LUCAS A., RODRÍGUEZ J.F., Study of the solubility and stability of polystyrene wastes in a dissolution recycling process, Waste Management 29(6), 2009: 1814–1818, DOI: 10.1016/j.wasman.2009.01.001.
- [33] KUZMENKO A.B., Guide to Reffit: Software to Fit Optical Spectra, https://reffit.ch (accessed May 4, 2022).
- [34] BĂDILESCU S., GIURGINCA M., TOADER M., TĂLPUŞ V., Spectroscopia în Infraroşu a Polimerilor şi Auxiliarilor, Tehnică, Bucureşti [Ed.], 1982: 132–134 (in Romanian).
- [35] NISHIKIDA K., COATES J., Infrared and Raman analysis of polymers, [In] Handbook of Plastics Analysis, H. Lobo, J.V. Bonilla [Eds.], CRC Press, 2003: 198–328, DOI: 10.1201/9780203911983.
- [36] JABBARI E., PEPPAS N.A., Use of ATR-FTIR to study interdiffusion in polystyrene and poly(vinyl methyl ether), Macromolecules 26(9), 1993: 2175–2186, DOI: 10.1021/ma00061a006.
- [37] GUPTA D., WANG L., HANSSEN L.M., HSIA J.J., DATLA R.U., Standard Reference Materials: Polystyrene Films for Calibrating the Wavelength Scale of Infrared Spectrophotometers—SRM 1921, NIST Special Publication 260-122, U.S. Government Printing Office, Washington, 1995: 1–25, DOI: 10.6028/nist.sp.260-122.
- [38] NIST Standard Reference Database 69, NIST Chemistry WebBook, https://webbook.nist.gov/cgi/cbook.cgi?ID=C71432&Type=IR-SPEC&Index=2 (accessed May 4, 2022).
- [39] ZOLOTAREV V.M., VOLCHEK B.Z., VLASOVA E.N., Optical constants of industrial polymers in the IR region, Optics and Spectroscopy 101(5), 2006: 716–723, DOI: 10.1134/S0030400X06110105.
- [40] NIST Standard Reference Database 69, NIST Chemistry WebBook, https://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Type=IR-SPEC&Index=2 (accessed May 4, 2022).
- [41] NIST Standard Reference Database 69, NIST Chemistry WebBook, https://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Type=IR-SPEC&Index=2 (accessed May 4, 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eef1208f-289b-434a-ba11-847093a1b45b