PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of explosive systems containing water

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości wybuchowych układów zawierających wodę
Języki publikacji
EN
Abstrakty
EN
The paper presents the of the properties of explosive mixtures containing water as one of the basic components. The literature data analysis was performed for binary mixtures containing: aluminum dust, ammonium nitrate(V) and high-energy explosives (nitrocellulose, trinitrotoluene, hexogene, pentrite) or their mixtures, smokeless powders in addition to water. The most frequently described parameters were the brisance, the detonation velocity and the detonation capacity.
PL
W artykule przedstawiono właściwości wybuchowych mieszanin zawierających wodę jako podstawowy składnik. Analizę danych literaturowych wykonano dla mieszanin binarnych zawierających oprócz wody: pył aluminiowy, azotan(V) amonu lub wysokoenergetyczne materiały wybuchowe (trinitrotoluen, heksogen, pentryt) lub ich mieszaniny oraz prochy bezdymne. Najczęściej opisanymi parametrami były: kruszność, prędkość detonacji i zdolność do detonacji.
Rocznik
Tom
Strony
14--25
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
  • Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, 6 Annopol St., 03-236 Warszawa, Poland
  • Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Department of Explosive Techniques, 1 Zawadzkiego St., 42-693 Krupski Młyn, Poland
  • Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Department of Explosive Techniques, 1 Zawadzkiego St., 42-693 Krupski Młyn, Poland
Bibliografia
  • [1] Shidlovskiy A.A. Explosive Mixtures of Water and Methanol with Magnesium and Aluminum. (in Russian) Zh. Prikl. Khim. 1946, 19: 371-378.
  • [2] Rozner A.G., Holden J.R. Fast Reaction of Aluminum – A Literature Review. Naval Surface Weapons Center, Report NSWC/WPOL/TR-77-193, Silver Spring, MD, 1977.
  • [3] Schmitt M.M., Bowden P.R., Tappan B.C., Henneke D. Steady-state Shock-driven Reactions in Mixtures of Nano-sized Aluminum and Dilute Hydrogen Peroxide. J. Energ. Mater. 2018, 36: 266-277.
  • [4] Medard L. Explosive Characteristics of Aluminum and Magnesium Mixtures with Water and Methanol. Mem. Pourdes 1951, 33: 432-503.
  • [5] Risha G.A., Sabourin J.L., Yang V., Yetter R.A., Son S.F., Tappan B.C. Combustion and Conversion Efficiency of Nanoaluminum-Water Mixtures. Combust. Sci. Technol. 2008, 180: 2127-2142.
  • [6] Risha G.A., Son S.F., Yetter R.A., Yang V., Tappan B.C. Combustion of Nano-Aluminum and Liquid Water. Proc. Combust. Inst. 2007, 31: 2029-2036.
  • [7] Risha G.A., Connell T., Yetter R., Yang V., Wood W., Pfeil M., Pourpoint T.L., Son S.F. Aluminum-Ice (ALICE) Propellants for Hydrogen Generation and Propulsion. Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, CO, USA, 2009, AIAA-2009-4877, 1-16. https://arc.aiaa.org/doi/abs/10.2514/6.2009-4877 [retrevied 15.10.2022].
  • [8] Wood T.D., Pfeil M.A., Pourpoint T.L., Tsohas J., Son S.F., Connell T.L., Risha G.A., Yetter R.A. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant. Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, CO, USA, 2009, AIAA-2009-4890. 1-17, https://arc.aiaa.org/doi/abs/10.2514/6. 2009-4890 [retrevied 16.10.2022].
  • [9] Sippel T.R., Son S.F., Risha G.A., Yetter R.A. Combustion and Characterization of Nanoscale Aluminum and Ice Propellants. Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 2008, AIAA-2008-5040, 1-10. https://pennstate.pure.elsevier.com/en/publications/combustion-and-characterization-of-nanoscale-aluminum-and-ice-pro [retrevied 16.10.2022].
  • [10] Connell T.L., Risha G.A., Yetter R.A., Young G., Sundaram D.S., Yang V. Combustion of Alane and Aluminum with Water for Hydrogen and Thermal Energy Generation. Proc. Combust. Inst. 2011, 33: 1957-1965.
  • [11] Franson C., Orlandi O., Perut C., Fouin G., Chauveau C., Gokalp I., Calabro M. New High Energetic Composite Propellants for Space Applications: Refrigerated Solid Propellant. Proc. 2nd European Conference for Aerospace Sciences (EUCASS), Brussels, Belgium, July 1-6, 2007, 31.
  • [12] Sippel T.R., Pourpoint T.L., Son S.F. Combustion of Nanoaluminum and Water Propellant Effect of Equivalence Ratio and Safety/Aging Characterization. Propellants Explos. Pyrotech. 2013, 38: 56-66.
  • [13] Sucheska M. Test Methods for Explosives. New York: Springer-Verlag 1995, p. 45.
  • [14] Olson D.B., Banks M.I., Maxwell D., Shellhorn J. Detonability of Ammonium Nitrate Solutions. Baker Engineering and Risk Consultants, Inc. September 16, 2002. https.//www.google.pl/?gws_rd-ssl#q=detonability+of+ammonium+nitrate+solutions [retrieved 12.07.2019].
  • [15] Abel F. Compt. Rend. 1874, 78: 1432.
  • [16] Urbański T. Influence of Non-explosive Liquids on the Detonation Rate of Solid Explosives. (in Polish) Arch. Proc. Spalania 1972, 13(2): 117-132.
  • [17] Apin А.Ya. The Role of Fillers in the Detonation of Explosives and Gunpowder [in:] Physics of the Explosion, Collection No 2 of Experimental Research Papers in the Field of Explosion Physics. (in Russian) Moscow: Ed. USSR Academy of Sciences, 1953.
  • [18] Kast H. Spreng- u. Ziindstoffe, Braunschweig: 1921, 30.
  • [19] Urbański T. Chemistry and Technology of Explosives. Vol. II. (in Polish) Warsaw: Ed. Ministry of National Defence, 1955.
  • [20] Sytiy Н.М. (in Russian) Izv. Kyrgyz Branch of the Academy of Sciences of the USSR, 1945, 2-3: 48.
  • [21] Urbański T., Galas T. Compt. Rend. 1939, 209: 557.
  • [22] Cudziło S., Maranda A., Nowaczewski J., Trębiński R., Trzciński W.A. Military Explosives. (in Polish) Częstochowa: Ed. Faculty of Metallurgy and Materials Science of the Częstochowa University of Technology, 2000.
  • [23] Dubnov L.V., Bakharevich N.S., Romanov А.I. Industial Explosives. (in Russian) Моscow: Ed. Nеdrа, 1973.
  • [24] Svetlov B.Ya., Solntseva R.N., Тitushina М.I. Granular Explosives for Watered down Blast Hole In Open Pits. (in Russian) Vzryvnoe Delo 1960, 44(1): 40-58.
  • [25] Apin А.Ya., Vеlinа N.F. On the Critical Diameters of Explosive Charges and the Detonation Velocity of Hexogen. (in Russian) Vzryvnoe Delo 1967, 63(20): 5-37.
  • [26] Zygmunt B. On the Heat of the Explosion of Explosive-Water Mixtures. (in Polish) Biul. WAT. 1976, 25(6): 87-93.
  • [27] Zygmunt B. The Detonation Properties of Explosive-Water Mixtures. Propellants Explos. Pyrotech. 1982, 7(4): 107-109.
  • [28] Zygmunt B. On the Ability to Detonate Explosive-Water Mixtures. (in Polish) Biul. WAT. 1983, 32(8): 117-124.
  • [29] Zygmunt B., Buczkowski D., Maranda A. Third Generation Explosives. (in Polish) Warsaw: Ed. Military University of Technology, 2007.
  • [30] Baum F.A., Orlenko L.P., Stanyukovich K.P., Chelyshev V.P., Shekhter B.L. Explosion Physics. (in Russian) Moscow: Ed. Nedra, 1997.
  • [31] Maranda A., Nowaczewski J., Mika J. Mine Research of Granular TNT Recovered from Military Stocks. (in Polish) Górn. Odkryw. 1992, 34(1-2): 29-36.
  • [32] Maranda A., Miszczak M., Nowaczewski J. Application on the Explosives Withdrawn from Military Stocks in the Coal Mining Industry. Proc. 24th International Annual Conference of ICT. Energetic Materials. June-July, 1993, 72/1-13.
  • [33] NASA, AFORS Rest Environmentally Friendly Rocket Propellant. EurekAlert 21.08.2009. https://www.eurekalert.org/news-releases/472557, [retrevied 22.10.2022].
  • [34] Miller T., Herr J. Green Rocket Propulsion by Reaction of Al and Mg Powders and Water. Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AAIA-2004-4037, Fort Lauderdale, FL, 2004, 1-10, https://arc.aiaa.org/doi/10. 2514/6.2004-4037 [retrevied 22.10.2022].
  • [35] Cook M.A., Farnam H.E. Explosive Composition. Patent US 2930685, 1960.
  • [36] Bluhm H.F. Ammonium Nitrate Blasting Agent and Method of Use. Patent US 3447978, 1969.
  • [37] Cook M.A. Explosives – a Survey of Technical Advances. Ind. Eng. Chem. 1969, 60(7): 40-55.
  • [38] Maranda A. Role of Water in Detonation of Aluminium Sensitized Slurry. Propellants. Explos. Pyrotech. 1991, 16(5): 232-234.
  • [39] Maranda A. Study of Detonation of Aluminium Explosives Containing Organic Fuels. Propellants Explos. Pyrotech. 1991, 16(6): 264-272.
  • [40] Biegańska J. Using Nitrocelluse Powder in Emulsion Explosives. Combust. Explos. Shock Waves 2011, 47(3): 366-368.
  • [41] Cheng Y.F., Ma H.H., Shen Z.W., Liu R. Pressure Desensitization Influential Factors and Mechanism of Magnesium Hydride Sensitized Emulsion Explosives. Propellants Explos. Pyrotech. 2014, 39(2): 267-274.
  • [42] Cheng Y.F., Ma H.H., Shen Z.W., Liu R. Explosion Power and Pressure Desensitization Resisting Property of Emulsion Explosives Sensitized by MgH2. J. Energ. Mater. 2014, 32(3): 207-218.
  • [43] Cheng Y., Wang Q., Liu F., Ma H., Shen Z., Guo Z., Liu R. The Effect of the Energetic Additive Coated MgH2 on the Power of Emulsion Explosives Sensitized by Glass Microballoons. Cent. Eur. J. Energ. Mater. 2016, 13(3): 705-713.
  • [44] Cheng Y.-F., Meng X.-R., Feng Ch.-T., Wang Q., Wu S.-S., Ma H.-H., Shen Z.-W. The Effect of Hydrogen Containing Material TiH2 on the Detonation Characteristics of Emulsion Explosives. Propellants Explos. Pyrotech. 2017, 42(6): 585-591.
  • [45] Wang Y., Ma H., Shen Z., Wang B., Xue B., Ren L. Detonation Characteristic of Emulsion Explosives Sensitized by Hydrogen-Storage Glass Microballoons. Propellants Explos. Pyrotech. 2018, 43(9): 939-947.
  • [46] Yuonoshev A.S., Sil’vestrov A.V., Plastinin A.V., Rafeichik S.I. Influence of Artificial Pores on the Detonation Parameters of an Emulsion Explosives. Combust. Explos. Shock Waves 2017, 53(2): 205-210.
  • [47] Fang H., Cheng F.F., Tao Ch., Su H., Gong Y., Chen Y., Shen Z.-W. Effects of Content and Particle Size of Cenospheres on the Detonation Characteristics of Emulsion Explosive. J. Energ. Mater. 2021, 19(2): 197-214.
  • [48] Kramarczyk B., Pytlik M., Mertuszka P., Jaszcz K., Jarosz T. Novel Sensitizing Agent Formulation for Bulk Emulsion Explosives with Improved Energetic Parameters. Materials 2022, 15: 900.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eeee9fad-db42-4562-b4d4-680177948329
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.