PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simple and precise method for the threshold current determination in vertical-cavity surface-emitting lasers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present experimental results of spontaneous emission clamping in the threshold for vertical-cavity surface-emitting lasers (VCSELs) with oxide current confinement. We show that the spontaneous emission not wholly clamps in the threshold. We propose a new method for determining the threshold current value using the study of the clamping phenomena. This method has an advantage over the commonly used methods in the accuracy because the current of the spontaneous emission clamping is betted defined than the current of the slope change of the stimulated emission light-current curve. The estimated uncertainty of the method is no more than 20 μA.
Czasopismo
Rocznik
Strony
281--288
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstraße 36, Berlin, Federal Republic of Germany
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
  • Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstraße 36, Berlin, Federal Republic of Germany
  • Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstraße 36, Berlin, Federal Republic of Germany
  • Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
  • [1] COLDREN L.A., CORZINE S.W., Diode Lasers and Photonic Integrated Circuits, Wiley, 1995.
  • [2] MOCK A., First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling, Journal of the Optical Society of America B 27(11), 2010, pp. 2262–2272, DOI:10.1364/JOSAB.27.002262.
  • [3] BJÖRK G., KARLSSON A., YAMAMOTO Y., Definition of a laser threshold, Physical Review A 50(2),1994, pp. 1675–1680, DOI:10.1103/PhysRevA.50.1675.
  • [4] SIEGMAN A.E., Lasers, University Science Books, 1986.
  • [5] WANG T., PUCCIONI G.P., LIPPI G.L., On set of lasing in small devices: the identification of the first threshold through autocorrelation resonance, Annalen der Physik 530(8), 2018, article 1800086,DOI:10.1002/andp.201800086.
  • [6] KANE D.M., TOOMEY J.P., Precision threshold current measurement for semiconductor lasers based on relaxation oscillation frequency, Journal of Lightwave Technology 27(15), 2009, pp. 2949–2952, DOI:10.1109/JLT.2009.2019112.
  • [7] MICHALZIK R. [Ed.], VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences, Vol. 166, Springer, Berlin, Heidelberg, 2013, DOI:10.1007/978-3-642-24986-0.
  • [8] NING C.Z., What is laser threshold?, IEEE Journal of Selected Topics in Quantum Electronics 19(4), 2013, article 1503604, DOI:10.1109/JSTQE.2013.2259222.
  • [9] SHIN J.H., JU Y.G., SHIN H.E., LEE Y.H., Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss, Applied Physics Letters 70(18), 1997, pp. 2344–2346, DOI:10.1063/1.118869.
  • [10] PAOLI T., Saturation behavior of the spontaneous emission from double-heterostructure junction lasers operating high above threshold, IEEE Journal of Quantum Electronics 9(2), 1973, pp. 267–272, DOI:10.1109/JQE.1973.1077481.
  • [11] MIYAMOTO T., SUDA Y., Simultaneous use of spontaneous emission light in VCSEL for improving efficiency of optical wireless power transmission, 2018 IEEE International Semiconductor Laser Conference (ISLC), 2018, pp. 1–2, DOI:10.1109/ISLC.2018.8516233.
  • [12] WU J., LONG H., SHI X., YING L., ZHENG Z., ZHANG B., Reduction of lasing threshold of GaN-based vertical-cavity surface-emitting lasers by using short cavity lengths, IEEE Transactions on Electron Devices 65(6), 2018, pp. 2504–2508, DOI:10.1109/TED.2018.2825992.
  • [13] LEE J.H., MOON J.H., SU P.C., LEE S.H., Numerical analysis of injected current effects on thermal characteristics of vertical-cavity surface-emitting laser, Journal of Mechanical Science and Technology 32(3), 2018, pp. 1463–1469, DOI:10.1007/s12206-018-0250-5.
  • [14] MOSER P., LOTT J.A., LARISCH G., BIMBERG D., Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs, Journal of Lightwave Technology 33(4), 2015, pp. 825–831, DOI:10.1109/JLT.2014.2365237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eeec9b06-d9ff-46fc-9d74-b9f97a7d3d87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.