PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental testing of the influence of the operating loading on the flow characteristics of hydraulic pump

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contribution deals with the influence of the operating loading on the flow characteristics of the hydraulic pump under laboratory conditions. In the test, a new toothed hydraulic pump and hydraulic oil with kinematic viscosity at 40°C, ν = 64.2 mm2.s-1 were used. The operational loading was measured during the most difficult agrotechnical operation – ploughing, at which the loading of the hydraulic pump is the greatest. Laboratory testing was determined for 200 hours, and the flow characteristics had been detected at 50 hours intervals. Measurement of the flow characteristics was performed at rated speed n = 1,000 rpm. Measurement of the flow characteristics was carried out in dependence on the loading pressure from p = 0 MPa to p = 20 MPa. When p = 0 MPa, the value reached n = 91.70% and when p = 20 MPa, n = 86.68%. Running-in of the hydraulic pump lasted 150 hours, with an increase of the flow characteristics Δηvol = 1.36% (p = 10 MPa) compared to the initial state. After working for 200 hours, the flow rate of the hydraulic pump decreases compared to 150 hours.
Słowa kluczowe
Rocznik
Strony
583--589
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Slovak University of Agriculture, Department of Transport and Handling, Tr. Andreja Hlinku2, 94976 Nitra, Slovakia
  • Slovak University of Agriculture, Department of Transport and Handling, Tr. Andreja Hlinku2, 94976 Nitra, Slovakia
  • Slovak University of Agriculture, Department of Transport and Handling, Tr. Andreja Hlinku2, 94976 Nitra, Slovakia
  • Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka St, 2, 01011 Kyiv, Ukraine
  • Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka St, 2, 01011 Kyiv, Ukraine
  • Slovak University of Agriculture, Department of Transport and Handling, Tr. Andreja Hlinku2, 94976 Nitra, Slovakia
  • University of Educational Management, Sichovykh Striltsiv St, 04053 52А, 02000 Kyiv, Ukraine
  • Slovak University of Agriculture, Department of Transport and Handling, Tr. Andreja Hlinku2, 94976 Nitra, Slovakia
  • University of Defence, Department of Combat and Special Vehicle, Faculty of Military Technology, Kounicova 65, 662 10 Brno-střed, Czech Republic
Bibliografia
  • 1. Alias N.H, Yunus R, Idris A, Omar R. Effect of additives on oxidation characteristics of palm oil-based trimethylolpropane ester in hydraulic applications. European Journal of Lipid Science and Technology 2009; 111(4): 368–375, https://doi.org/10.1002/ejlt.200800136.
  • 2. Aliboev B.A. Performance characteristics and wear pattern of precision parts of cotton tractor hydraulics. Journal of Friction and Wear 2016; 37(1): 83–85, https://doi.org/10.3103/S1068366616010025.
  • 3. Antoniak P, Stryczek J. Visualization study of the flow processes and phenomena in the external gear pump. Archives of Civil and Mechanical Engineering 2018; 18(4): 1103–1115, https://doi.org/10.1016/j.acme.2018.03.001.
  • 4. Asaff Y, De Negri V.J, Theissen H, Murrenhoff H. Analysis of the Influence of Contaminants on the Biodegradability Characteristics and Ageing of Biodegradable Hydraulic Fluids. Strojniski Vestnik – Journal of Mechanical Engineering 2014; 60(6): 417– 424, https://doi.org/10.5545/sv-jme.2013.1451.
  • 5. Borghi M, Zardin B, Speccia E. External Gear Pump Volumetric Efficiency. Numerical and Experimental Analysis. SAE 2009 Commercial Vehicle Engineering Congress & Exhibition 2009; 26:2009-01-2844, https://doi.org/10.4271/2009-01-2844.
  • 6. Dobrota D, Lalić B, Oršulić M. Experimantal Modeling of Volumetric of High-Pressure External Gear Pump. Naše more 2010; 57(5-6): 235–240, https://hrcak.srce.hr/62168.
  • 7. Egbe E. Design Analysis and Testing of a Gear Pump. International Journal Of Engineering and Science 2013; 3(2): 01–07, http://www.researchinventy.com/papers/v3i2/A0320107.pdf.
  • 8. Hao X, Zhou X, Liu X, Sang X. Flow characteristics of external gear pumps considering trapped volume. Advances in Mechanical Engineering 2013; 8(10): 1–10, https://doi.org/10.1177/1687814016674100.
  • 9. Hemanth R. Design, modeling and analysis of a gear pump for dispensing application.A pplied Machanics and Materials 2014; 592-594: 1035–1039, https://doi.org/10.4028/www.scientific.net/AMM.592-594.1035.
  • 10. Hryciów Z, Rybak P, Gieleta R. The influence of temperature on the damping characteristic of hydraulic shock absorbers. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (2): 346–351, http://doi.org/10.17531/ein.2021.2.14.
  • 11. Jocanovic M, Sevic D, Karanovic V, Beker I, Dudic S. Increased Efficiency of Hydraulic Systems Through Reliably Theory and Monitoring of Systems Operating Parameters. Strojniski Vestnik – Journal of Mechanical Engineering 2012; 58(4): 281–288, https://doi.org/10.5545/sv-jme.2011.084.
  • 12. Kim J.H, Kim S.G. The flow rate characteristics of external gear pump for EHPS. 4th International Conference on Intelligent Systems, Modelling and Simulation 2013; 346-349, http://doi.org/10.1109/ISMS.2013.113.
  • 13. Kučera M, Aleš Z. Morphology analysis of friction particles generated in tractor transmission oils. Acta Technologica Agriculturae 2017; 20(3): 57–62, https://doi.org/10.1515/ata-2017-0012.
  • 14. Liu J.M, Gu L, Geng B.L, Shi Y. Hydraulic pump fault diagnosis based on chaotic characteristics of speed signals under non-stationary conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2021; 235(17): 3468–3482, http://doi.org/ 10.1177/0954406221999069.
  • 15. Malekzadeh A, Pouranfard A.R, Hatami N, Kazemnejad Banari A, Rahimi M.R. Experimental Investigations on the Viscosity of Magnetic Nanofluids under the Influence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field. Journal of Applied Fluid Mechanics 2015; 9(2) 693–697, http://doi.org/ 10.18869/ACADPUB.JAFM.68.225.24022.
  • 16. Michael P.W, Khalid H, Wanke T. An Investigation of external gear pump efficiency and stribeck values. SAE 2009 Commercial Vehicle Engineering Congress & Exhibition 2009; 10:2009-01-2041, https://doi.org/10.4271/2012-01-2041.https://doi.org/10.4271/2009-01-2844
  • 17. Nowak P, Kucharska K, Kaminski M.A. The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment, Energies 2020 13(15): 1–10, https://doi.org/10.3390/en13153772.
  • 18. Novaković B, Radovanović L, Zuber N, Radosav D, Dordević L, Kavalić M. Analysis of the influence of hydraulic fluid quality on external gear pump performance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(2): 260–268. http://doi.org/10.17531/ein.2022.2.7.
  • 19. Paeglis T, Karabeško P, Mierina I, Sežane R, Strele M, Tupureina V, Jure M. Compositions of hydraulic fluids based on rapeseed oil and its derivatives. Engineering for rural development 2009; 171–175, https://www.tf.llu.lv/conference/proceedings2009/Papers/29_Talis_Paeglis.pdf.
  • 20. Renn J.C, Tsai C. Development of an unconventional electro-hydraulic proportional valve with fuzzy-logic controller for hydraulic presses. International Journal of Advanced Manufacturing Technology 2005; 26(1): 10–16, https://doi.org/10.1007/s00170-003-1973-7.
  • 21. Rundo M. Theoretical flow rate in crescent pumps. Simulation Modelling Practice and Theorym 2017; 71(1): 1–14, https://doi.org/10.1016/j.simpat.2016.11.001.
  • 22. Sejkorova M, Kučera M, Hurtova I, Voltr O. Application of FTIR-ATR Spectrometry in Conjunction with Multivariate Regression Methods for Viscosity Prediction of Worn-Out Motor Oils. Applied Science-Basel 2021; 11(9): 1–11, https://doi.org/10.3390/app11093842.
  • 23. Shen H, Li Z, Qi L, Qiao L. A method for gear fatigue life prediction considering the internal flow field of the gear pump. Mechanical Systems and Signal Processing 2018; 99: 921–929, https://doi.org/10.1016/j.ymssp.2016.09.022.
  • 24. Stawiński L, Kosucki A, Cebulak M, Górniak vel Górski A, Grala M. Investigation of the influence of hydraulic oil temperature on the variablespeed pump performance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(2): 289–296, http://doi. org/10.17531/ein.2022.2.10.
  • 25. Szwemin P, Fiebig W. The Influence of Radial and Axial Gaps on Volumetric Efficiency of External Gear Pumps. Energies 2021; 14(15): 4468, https://doi.org/10.3390/en14154468.
  • 26. Tkáč Z, Kosiba J, Hujo Ľ, Jablonický J, Nosian J. Experimental hydraulic device for the testing of hydraulic pumps and liquids. Tribology in industry 2018; 40(1): 149–155, https://doi.org/10.24874/ti.2018.40.01.14.
  • 27. Tóth F, Fürstenzeller A, Rusnák J, Bošanský M, Kadnár M. The possibilities of using ecological liquids in tribological gliding systems with a selected surface created by the radial welding technology. Acta technologica agriculturae 2019; 22(4): 134– 139, https://doi.org/10.2478/ata-2019-0024.
  • 28. Trivedy H.K, Bhatt D.V. Effect of lubrication oil on tribological behavior in pin disc test rig. Tribology in Industry 2017; 39(1): 90–99, https://doi.org 10.24874/ti.2017.39.01.10.
  • 29. Wu D, Yao J, Huang Y.J. Study on the Speed Control System of Hydraulic Pump-Motor Based on PID Neural Network. Advanced Materials Research 2012; 542-543: 759–764, https://doi.org/10.4028/www.scientific.net/AMR.542-543.759.
  • 30. ISO 8217:2012 Fueal Standard for marine distillate fuels, 2012.
  • 31. ISO 15380:2011 Lubricants, industrial oils and reladet products (class L) – Family H (hydraulic systems) – Specifications for categories HETG, HEPG, HEES and HEPR, 2011.
  • 32. DIN 51562:1999 Viscometry – Measurement of kinematic viscosity by means: Viscometer specification and measurement procedure, 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eee944ff-5417-4873-a998-1e49360fe5f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.