PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modelling of the viscosity effect of heave plates for floating wind turbines by hydrodynamic coefficients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the methods of modelling the movement of floating wind turbines is the use of the diffraction method. However, this method does not take into account the influence of viscosity; therefore, in many cases, it needs to be extended with a matrix of appropriate coefficients. The effect of viscosity causes both the added mass coefficient and the damping coefficient to increase. The determined coefficients were entered into the ANSYS AQWA program, and the calculation results of the transfer function determined with the use of linear and quadratic damping were presented. The results were compared with the results of the experiment, indicating greater convergence for the quadratic model.
Rocznik
Strony
469--476
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • *Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, ul. Narutowicza 11/12 8-233 Gdansk, Poland
  • *Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, ul. Narutowicza 11/12 8-233 Gdansk, Poland
Bibliografia
  • 1. Dymarski P, Dymarski C, Ciba E. Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type During its Installation. Polish Maritime Research 2019, Vol. 26, 4(104), 109-116. DOI:10.2478/pomr-2019-0072.
  • 2. Kraskowski M, Marcinkowski T. Numerical and experimental analysis of the wave induced forces on the tripod support structure. Laborato-ry study. Bulletin of Maritime Institute in Gdańsk 2017 32(1):21-29. DOI 1 0.5604/12307424.1224269.
  • 3. Motallebi M, Ghassemi H, Shokouhian M. DeepCwind semi-submersible floating offshore wind turbine platform with a nonlinear multi-segment catenary mooring line and intermediate buoy. Scien-tific Journals of the Maritime University of Szczecin 2022, 69 (141). DOI: 10.17402/496.
  • 4. Ciba E, Dymarski P, Grygorowicz M. Heave Plates with Holes for Floating Offshore Wind Turbines. Polish Maritime Research 2022 vol 29 pp.26-33. DOI: 10.2478/pomr-2022-0003.
  • 5. Subbulakshmi A, Sundaravadivelu R. Heave damping of spar plat-form for offshore wind turbine with heave plate. Ocean Engineering 2016 121, 24-36.
  • 6. Tao L, Cai S. Heave Motion Suppression of a Spar with a Heave Plate. Ocean Engineering 2004.
  • 7. Medina-Manuel A, Botia-Vera E, Saettone S, Calderon-Sanchez J, Bulian G, Souto-Iglesias Hydrodynamic coefficients from forced and decay heave motion tests of a scaled model of a column of a floating wind turbine equipped with a heave plate. Ocean Engineering 2022,252. https://doi.org/10.1016/j.oceaneng.2022.110985.
  • 8. Ciba E. Heave Motion of a Vertical Cylinder with Heave Plates. Polish Maritime Research 2021, Vol. 28,iss. 1(109), s.42-47 .https://doi.org/10.2478/pomr-2021-0004.
  • 9. Tao L, Dray D. Hydrodynamic performance of solid and porous heave plates. Ocean Engineering 2008.doi:10.1016/j.oceaneng.2008.03.003.
  • 10. An S, Faltinsen O.M. An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates. Journal of Fluids and Structures 39 (2013) 87-101
  • 11. Tian X. et al Hydrodynamic coefficients of oscillating flat plates at 0:15 < KC < 3:15. Journal of Mechanical Science and Technology 2016. https://doi.org/10.1016/j.apor.2019.102042.
  • 12. Mentzoni F, Kristiansen T. Two-dimensional experimental and nu-merical investigations of parallel perforated plates in oscillating and orbital flows. Applied Ocean Research. 2020.10.1016/j.apor.2019.102042.
  • 13. Molin B, On the added mass and damping of periodic Arrays of fully or partially porous disks. Journal of Fluid and Structures 2001, 15(2), 275-290. doi:10.1006/jfls.2000.0338.
  • 14. Mojtaba E, Tao L, Shabakhty N. Hydrodynamic damping of solid and perforated heave plates oscillating at low KC number based on ex-perimental data: A review. Ocean Engineering 2022.DOI: 10.1016/j.oceaneng.2022.111247.
  • 15. Rao MJ, Nallayarasu S, Bhattacharyya SK. Numerical and experi-mental studies of heave damping and added mass of spar with heave plates using forced oscillation. Applied Ocean Research 2021, 111. https://doi.org/10.1016/j.apor.2021.102667.
  • 16. Maron A, Fernandez EM, Valea A, Lopez-Pavon C. Scale Effects on Heave Plates for Semi-Submersible Floating Offshore Wind Tur-bines. Case Study With a Solid Plain Plate. Journal of Offshore Me-chanics and Arctic Engineering 2019. DOI: 10.1115/1.4045374.
  • 17. Raed K, Murali K, Experimental and numerical analysis of a spar platform subjected to regular waves, Developments in Maritime Technology and Engineering – Guedes Soares & Santos (eds) 2021. DOI: 10.1201/9781003216599-64.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eee82232-1533-4de8-8633-aa2856daa6e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.