PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Research on the Velocity of Two Pneumatic Drives with an Element for Concurrent Motion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental studies of a pneumatic drive system were carried out with the ap-plied element for the concurrent movement of two pneumatic drives. The main aim of these experiments was to obtain the results of specific measurements of displacements of two piston rods of pneumatic drives in relation to different values of loads in the whole range of the travel length. On the basis of these results, the speed of piston rods of two drives was determined. The results achieved during the experiment, showed the possibility of simultaneous insertion of two pneumatic drives with the use of an ele-ment for concurrent motion. This article is a continuation of the first article which was the study of the stroke speed of pneumatic cylinders with a synchronizing element.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Chakraborty D., Rathi A., et al. Design of a Stephenson III six-bar path-generating mechanism for index finger rehabilitation device using nature-inspired algorithms. Neural Computing and Applications. Springer. 2021; 1–15.
  • 2. Khaled I., Faller L.M. Development of A Customized Rehabilitation Device Using Additive Manufacturing. The 14th Pervasive Technologies Related to Assistive Environments Conference. 2021.
  • 3. Pasker C.V., Huerta C. et al. PARKIBIP Feedback Wearable Rehabilitation Device: Market Analysis and Enhancements. 2021 IEEE International Symposium on Medical Measurements and Applications. IEEE, 2021.
  • 4. Curio E.M., Carbone G. Mechatronic Design of a Robot for Upper Limb Rehabilitation at Home. Journal of Bionic Engineering. 2021; 18(4): 857–871.
  • 5. Tang D., Xiao L. Recent Advances on Ankle Rehabilitation Device. Recent Patents on Engineering. 2020; 14(1): 56–68.
  • 6. Ullas U., Rajendrakumar P.K. Design of a Low Cost Lower Limb Rehabilitation Exoskeleton System. IOP Conference Series: Materials Science and Engineering. 2021; 1132(1).
  • 7. Akagi A. et al. Development of a Rehabilitation and Training Device Considering the Ankle Degree of Freedom. Journal of Robotics and Mechatronics. 2020; 32(3); 673–682.
  • 8. Bai X., Ewins D., Crocombe A.D., Xu W. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. PloS one. 2018; 13(10): e0205093.
  • 9. Li B., Cao H., Greenspan B., Lobo M.A. Development and evaluation of pneumatic actuators for pediatric upper extremity rehabilitation devices. The Journal of The Textile Institute. 2021; 1–8.
  • 10. Tian W., Suzuki Y., Akagi T., Dohta S., Kobayashi W., Shinohara T., Mohd A. Development of Wrist Rehabilitation Device Using Extension Type Flexible Pneumatic Actuators with Simple 3D Coordinate Measuring System. International Journal of Automotive and Mechanical Engineering. 2021; 18(4): 9158–9169.
  • 11. Koter K., Szulc W. Examination of Pneumatic Bellows for the Rehabilitation of the Human Jaw. In Biocybernetics and Biomedical Engineering–Current Trends and Challenges, Springer, Cham; 2022: 29–37.
  • 12. Tondu B. Towards an efficient inverse static model of a Festo actuator made of two antagonist muscles for hybrid control of its position and stiffness. arXiv preprint arXiv. 2021; 2104.13167.
  • 13. Jamian S., Salim S.N.S., Kamarudin M.N., Zainon M., Mohamad M.S. Abdullah L., Hanafiah M.A.M. Review on controller design in pneumatic actuator drive system. Telkomnika. 2020; 18(1): 332–342.
  • 14. Inoue Y. et al. Application to Pneumatic Servo System in Bilateral Control Based on Wave Variable. IEEE/SICE International Symposium on System Integration (SII). IEEE, 2020; 460–464.
  • 15. Jiménez M., Kurmyshev E., Castañeda C.E. Experimental study of double-acting pneumatic cylinder. Experimental Techniques. 2020; 44(3): 355–367.
  • 16. Cococi V.N., Safta C.A., Călinoiu C. Parameter tuning process for a closed-loop pneumatic actuator. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2021; 664(1): 012030.
  • 17. Węsierski Ł.N. Pneumatics. Elements and layouts. Wyd. UR; 2015. 18. Szenajch W. Pneumatic drive and control. Wyd. PWN; 2016.
  • 19. Cococi V.N., Călinoiu C., Safta C.A. 2021. Pneumatic Actuator Controlled by Proportional Valve. Experimental results. In E3S Web of Conferences. EDP Sciences. 2021; 286: 04010.
  • 20. Żyłka M., Szczerba Z. An element that synchronizes the work of two actuators. Utility model number W.126971, 2020.
  • 21. Dega W. Orthopedics and rehabilitation. PZWL; 2019.
  • 22. Laidler P. Stroke Rehabilitation Structure and Strategy. Wyd PZWL; 2021.
  • 23. Paśniczek R. Bioengineering in rehabilitation of the musculoskeletal system. Oficyna Wydawnicza PWN; 2021.
  • 24. Zembaty A. Kinesitherapy. Wyd. Kasper; 2003; 1.
  • 25. Ebelt-Paprotny G., Taxhet G., Wappelhorst U. (Eds.). Leitfaden Physiotherapie. Elsevier Health Sciences; 2017.
  • 26. Rogala J., Kozak-Szkopek E. Nurses knowledge about geriatric problems. Nursing problems. 2021; (3): 338–345.
  • 27. Lewera D. Stroke. Wyd. Continuo. Wrocław; 2018.
  • 28. Żyłka M., Żyłka W., Szczerba Z. Device for rehabilitation of lower limbs, PL 233327, 2019.
  • 29. Atlas of human measures - data for ergonomic design and evaluation: http://symulatorium.zut.edu.pl/fileadmin/PUBLIKACJE/Gedliczka_-_Atlas.pdf [access: 23.12.2021].
  • 30. Kułaga Z., Różdżyńska-Świątkowska A., Grajda,A., Gurzkowska B., Wojtyło M., Góźdź M., Litwin M. Percentile grids to assess the growth and nutritional status of Polish children and adolescents from birth to 18 years of age. Medical Standards. 2015; 12: 119–134.
  • 31. Winkler T. Computer aided design of anthropotechnical systems. WNT; 2010.
  • 32. Schindler-Ivens S., Desimone D., Grubich S., Kelley C., Sanghvi N., Brown D.A. Lower Extremity Passive Range of Motion in Community Ambulating Stroke Survivors, J. Neurol Phys Ther. 2008; 32(1): 21–31.
  • 33. Centonze D., Leocani L., Feys, P. Advances in physical rehabilitation of multiple sclerosis. Current opinion in neurology. 2020; 33(3), 255–261.
  • 34. Brenner I. Effects of passive exercise training in hemiplegic stroke patients: A mini-review. Sports Med Rehabil J. 2018; 3(3), 1036.
  • 35. Żyłka M.I. The Experimental Determination of the Speed of Piston Rods of Two Pneumatic Cylinders with a Synchronizing Element. Advances in Science and Technology. Research Journal. 2021; 15(2): 84–89.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eee798ef-fe47-47c6-a357-b12e58f0c770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.