PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Konferencja
Chronostratigraphy of Late Glacial aeolian activity in SW Poland – A case study from the Niemodlin Plateau
Języki publikacji
EN
Abstrakty
EN
The stratigraphy of Late Pleniglacial and Late Glacial fluvio-to-aeolian succession was investigated in two sites located at the Niemodlin Plateau, SW Poland. Lithofacial analysis was used for the reconstruction of sedimentary environments. An absolute chronology for climatic change and the resulting environmental changes were determined based on optically stimulated luminescence (OSL – nine samples) and radiocarbon (three samples) dating methods. Four phases of changes in sedimentary environments were established. The first depositional phase correlates with the Last Permafrost Maximum (24−17 ka) based on the type and size of the periglacial structures, which aggraded under continuous permafrost conditions. During 17.5−15.5 ka (upper Late Pleniglacial), a stratigraphic gap was detected, owing to a break in the deposition on the interfluve area. The second depositional phase took place during 15.5−13.5 ka. During this phase, the first part of the dune formation (Przechód site) and fluvio-aeolian cover (Siedliska site) was deposited. The sedimentary processes continued throughout the entire Bølling interstadial and Older Dryas. In the third phase (Allerød interstadial), soil formation took place. At the Siedliska site, palaeosol represented Usselo soil type, whereas at the Przechód site, there was a colluvial type of soil. The last phase (Younger Dryas) is represented by the main phase of dune formation in both sites. After the Younger Dryas, no aeolian activity was detected. High compliance with both absolute dating methods was noticed.
Wydawca
Czasopismo
Rocznik
Strony
124--137
Opis fizyczny
Bibliogr. 75 poz., rys.
Twórcy
autor
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Department of Geophysics, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
autor
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University in Lublin, Kraśnicka 2cd, 20-718, Lublin, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B str., 44-100 Gliwice, Poland
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Bibliografia
  • 1. Adamiec, G, and Aitken, MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37-50.
  • 2. Adamiec, G, Herr, AJ, and Bluszcz, A, 2012. Statistics of count numbers from a photomultiplier tube and its implication for error estimation. Radiation Measurements 47: 746-751, DOI: 10.1016/j.radmeas.2011.12.009.
  • 3. Aitken, MJ, 1985. Thermoluminescence Dating. Academic Press, London.
  • 4. Arnold, LJ, Bailey, RM, and Tucker, GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2: 162-167, DOI:10.1016/j.quageo.2006.05.003.
  • 5. Bateman, MD, and Van Huissteden, J. 1999: The timing of last-glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277–283, DOI: 10.1002/(SICI)1099-1417(199905)14:33. 0.CO;2-W.
  • 6. Bateman, MD, Murton, JB, and Crowe, W. 2000. Late Devensian and Holocene depositional environments associated with the coversand around Caistor, north Lincolnshire, UK. Boreas 29: 1–15, DOI: 10.1111/j.1502-3885.2000.tb01196.x.
  • 7. Berger, GW, 2010. An alternate form of probability- distribution plot for De values. Ancient TL 28: 11-22, DOI: 10.1515/geochr-2015-0088.
  • 8. Bohncke, S, Vandenberghe, J, and Huijzer, AS, 1993. Periglacial environments during the Weichselian Late Glacial in the Maas valley, the Netherlands. Geologie en Mijnbouw 72: 193–210.
  • 9. Bohncke S, Kasse C, and Vandenberghe J. 1995. Climate induced environmental changes during the Vistulian Lateglacial at Żabinko, Poland. Quaestiones Geographicae, Special Issue 4: 43–64.
  • 10. Borówka RK, 1990. The holocene development and present morphology of Łeba Dunes, Baltic coast of Poland. In: Nordstrom KF, Psuty N, Carter B. eds., Coastal Dunes. Form and Proceses. J. Wiley & Sons, pp: 289–313.
  • 11. Bronk Ramsey, C, 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51: 337–360, DOI: 10.1017/S0033822200033865.
  • 12. Derese, C, Vandenberghe, D, and Paulissen, E, 2009. Revisiting a type locality for Late Glacial aeolian sand deposition in NW Europe: optical dating of the dune complex at Opgrimbie (NE Belgium). Geomorphology 109: 27–35, DOI: 10.1016/j.geomorph.2008.08.022.
  • 13. Dzieduszyńska, D, 2019. Timing of environmental changes of the Weichselian decline (18.0–11.5 ka cal BP) using frequency distribution of 14C dates for the Łódź region, Central Poland. Quaternary International 501: 135-146, DOI: 10.1016/j. quaint.2017.08.012.
  • 14. Duller, GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37: 589-612, DOI: 10.1111/j.1502-3885.2008.00051.x.
  • 15. Ehlers, J, and Gibbard, PL, 2004. Quaternary Glaciations: Extent and Chronology, PI: Europe. Elsevier, Amsterdam, 475 pp.
  • 16. Erkens, G, Hoffmann, T, Gerlach, R, and Klostermann, J, 2011. Complex fluvial response to Lateglacial and Holocene allogenic forcing in the Lower Rhine Valley (Germany). Quaternary Science Reviews 30: 611–627, DOI: 10.1016/j.quascirev.2010.11.019.
  • 17. Ewertowski M, 2009. Ice-wedge Pseudomorphs and Frostcracking Structures in Weichselian Sediments, Central-West Poland. Permafrost and Periglacial Processes 20: 316–330, DOI: 10.1002/ppp.657.
  • 18. Fedorowicz S, and Zieliński P, 2009. Chronology of aeolian events recorded in the Karczmiska dune (Lublin Upland) in the light of lithofacial analysis, C-14 and TL dating. Geochronometria, 33: 9–17, DOI: 10.2478/v10003-009-0010-8.
  • 19. Folk, RL, and Ward, WC, 1957. Brazos River Bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3-26, DOI: 10.1306/74D70646-2B21-11D7- 8648000102C1865D.
  • 20. Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, and Olley, JM, 1999. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835- 1857.
  • 21. Goździk, JS, 1995. Permafrost evolution and its impact on deposition conditions between 20 and 10 ka BP in Poland. Biuletyn Peryglacjalny 34: 54–72.
  • 22. Goździk, J, 2007. The Vistulian aeolian succession in central Poland. Sedimentary Geology 193: 211-220, DOI: 10.1016/j. sedgeo.2005.11.026.
  • 23. Guerin G, Mercier N, and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5-8.
  • 24. Inman, DL, 1952. Measures for describing the size distribution of sediments. Jour. Sedim. Petrol, 22: 125-145.
  • 25. Isarin, RFB, Renssen, H, and Koster, EA, 1997. Surface wind climate during the Younger Dryas in Europe as inferred from aeolian records and model simulations. Palaeogeography, Palaeoclimatology, Palaeoecology 134: 127-148, DOI: 10.1016/ S0031-0182(96)00155-1.
  • 26. Kalińska-Nartiša, E, Nartišs, M, Thiel, C, Buylaert, JP, and Murray, AS, 2015. Late-glacial to Holocene aeolian deposition in northeastern Europe—the timing of sedimentation at the Iisaku site (NE Estonia). Quaternary International 357: 70–81, DOI: 10.1016/j.quaint.2014.08.039.
  • 27. Kasse, C, 1997. Cold-Climate Aeolian Sand–Sheet Formation in North–Western Europe (c. 14–12.4 ka); a response to Permafrost Degradation and Increased Aridity. Permafrost and Periglacial Processes 8: 295-311, DOI: 10.1002/(SICI)1099- 1530(199709)8:33.0.CO;2-0.
  • 28. Kasse, C, 2002. Sandy aeolian deposits and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26: 507-532.
  • 29. Kasse, C, Vanderberghe, J, Van Huissteden, J, Bohncke, SJP, and Bos, JAA, 2003. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quaternary Science Reviews 22: 2141–2156, DOI: 10.1016/ S0277-3791(03)00146-X.
  • 30. Kasse, C, Vanderberghe, D, De Corte, F, and Van Den Haute, P, 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (souther Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22: 695-708, DOI: 10.1002/jqs.1087.
  • 31. Konecka-Betley, K, 1991. Late Vistulian and Holocene fossil soils developed from aeolian and alluvial sediments of the Warsaw Basin. Zeitschrift für Geomorphologie Neue Folge SupplementBand 90: 99-105.
  • 32. Koster, EA, 1988. Ancient and modern cold–climate aeolian sand deposition: a review. Journal of Quaternary Science 3: 69-83, DOI: 10.1002/jqs.3390030109.
  • 33. Kozarski, S, 1995. The periglacial impact on the deglaciated area of northern Poland after 20 kyr BP. Biuletyn Peryglacjalny 34: 73–102.
  • 34. Kulesza, P, Suchora, M, Pidek, I A, and Alexandrowicz, WP, 2011. Chronology and directions of Late Glacial palaeoenvironmental changes: A multi-proxy study on sediments of Lake Słone (SE Poland). Quaternary International 238: 89-106, DOI: 10.1016/j.quaint.2010.12.024.
  • 35. Litt, T, Brauer, A, Goslar, T, Merkt, J, Bałaga, K, Müller, H, Ralska-Jasiewiczowa, M, Stebich, M, and Negendank, JF, 2001. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews, 20: 1233–1249, DOI: 10.1016/S0277-3791(00)00149-9.
  • 36. Manikowska B, 1991. Vistulian and Holocene aeolian activity, pedostratigraphy and relief evolution in Central Poland. Zeitschrift für Geomorphologie NF, Supplmentband 90: 131-141.
  • 37. Manikowska B, 1995. Aeolian activity differentation in the area of Poland during the Period 20-8 ka BP. Biuletyn Peryglacjalny 34: 125-166.
  • 38. McKee ED, 1966. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology 7: 1–69, DOI: 10.1111/j.1365-3091.1966.tb01579.x.
  • 39. Meinsen, J, Winsemann, J, Roskosch, J, Brandes, C, Frechen, M, Böttcher, J, and Dultz, S, 2014. Climate control on the evolution of Late Pleistocene alluvial fan and aeolian sand-sheet systems in NW Germany. Boreas 43: 42-66, DOI: 10.1111/bor.12021.
  • 40. Miall, AD, 1978. Lithofacies types and vertical profile models in braided rivers: a summary. In: Miall, AD. ed., Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5: 597–604.
  • 41. Miall, AD, 1996. Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. New York, SpringerVerlag pp. 582.
  • 42. Murray, AS, and Wintle, AG, 2000. Luminescence dating of quartz using an improved singlealiquot regenerative-dose protocol. Radiation Measurements 32: 57-73, DOI: 10.1016/ S1350-4487(99)00253-X.
  • 43. Murton, JB, 2007. Ice wedges and ice-wedge casts. In: Elias Sa, ed., Encyclopedia of Quaternary Science 3, Amsterdam, Elsevier Science BV: 2154-2169.
  • 44. Nowaczyk B, 1986. Wiek wydm, ich cechy granulometryczne i strukturalne a schemat cyrkulacji atmosferycznej w Polsce w późnym vistulianie i holocenie. Seria Geografia 28. Poznań, Wyd. Naukowe UAM
  • 45. Nowaczyk, B, 2000. Development of dunes and aeolian cover sands in Poland in the Late Vistulian and Holocene. In: Chojnicki, Z, Parysek, JJ, eds., Polish Geography; Problems, Researches, Aplications. Poznań, UAM, Bogucki Wyd. Naukowe S.C: 133–151.
  • 46. Pawlyta, J, Pazdur, A, Rakowski, AZ, Miller, BF, and Harkness, DD, 1998. Commissioning of a Quantulus 1220 liquid scintillation beta spectrometer for measuring 14C and 3H at natural abundance levels. Radiocarbon 40(1): 201–209, DOI: 10.1017/S0033822200018051.
  • 47. Pernarowski L, 1968. Obszary wydmowe Opolszczyzny. In: Szczepankiewicz S, ed., Studia geograficzno-fizyczne z obszaru Opolszczyzny 1: 102-134 (in Polish).
  • 48. Prescott, JR, and Stephan, LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1: 16-25.
  • 49. Piwocki, M, and Ziembińska-Tworzydło, M. 1997. Neogene of the Polish Lowlands lithostratigraphy and pollen-spore zones. Geological Quarterly 41: 21-40.
  • 50. Przybylski B, and Badura J, 2001. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000, arkusz Niemodlin (872). Warszawa, Państwowy Instytut Geologiczny.
  • 51. Pye, K, and Tsoar, H, 2009. Aeolian sand and sand dunes. Springer-Verlag, 458.
  • 52. Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, and Starkel, L. eds., 1998. Lake Gościąż, Central Poland, A Monographic Study. Part I. Kraków, W. Szafer Institute of Botany pp. 340.
  • 53. Rasmussen, S.O, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, Gkinis, V, Guillevic, M, Hoek, WZ, Lowe, JJ, Pedro, JB, Popp, T, Seierstad, IK, Steffensen, JP, Svensson, AM, Vallelonga, P, Vinther, BM, Walker, MJC, Wheatley, JJ, and Winstrup, M, 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106: 14–28, DOI: 10.1016/j.quascirev.2014.09.007.
  • 54. Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, and van der Plicht, J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55(4): 1869–1887, DOI: 10.2458/azu_js_rc.55.16947.
  • 55. Rinterknecht, VR, Clark, PU, Raisbeck, GM, Yiou, F, Brook, EJ, Bitinas, A, Marks, L, Zelcs, V, Lunkka, JP, Pavlovskaya, IE, Piotrowski, JA, and Raukas, A, 2006. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311: 1449–1452, DOI: 10.1126/science.1120702.
  • 56. Schwan, J, 1986. The origin of horizontal alternating bedding in Weichselian Aeolian sands in northwestern Europe. Sedimentary Geology 49: 73–108, DOI: 10.1016/0037-0738(86)90016-3.
  • 57. Solon J, Borzyszkowski J, Bidłasik M, Richling A, Badora K, Balon J, Brzezińska-Wójcik T, Chabudziński Ł, Dobrowolski R, Grzegorczyk I, Jodłowski M, Kistowski M, Kot R, Krąż P, Lechnio J, Macias A, Majchrowska A, Malinowska E, Migoń P, MygaPiątek U, Nita J, Papińska E, Rodzik J, Strzyż M, Terpiłowski S, and Ziaja W, 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91.2: 143-170, DOI: 10.7163/GPol.0115.
  • 58. Southon, JR, Staff, RA, Turney, CSM, and van der Plicht, J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon 55: 1889-1903.
  • 59. Starkel, L, Michczyńska, DJ, Gębica, P, Kiss, T, Panin, A. and Persoiu, I, 2015. Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60-8 ka cal BP). Quaternary International 388: 97–118, DOI: 10.1016/j. quaint.2015.04.017.
  • 60. Tudyka, K, Pazdur, A, Theodórsson, P, Michczyński, A, and Pawlyta, J, (2010). The Application of ICELS Systems for Radiocarbon Dating. Radiocarbon 52(4): 1661–1666, DOI: 10.1017/ S0033822200056393.
  • 61. Tudyka, K, Miłosz, S, Adamiec, G, Bluszcz, A, Poręba, G, Paszkowski, Ł, and Kolarczyk, A, 2018. μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurement 118: 8-13, DOI: 10.1016/j.radmeas.2018.07.016.
  • 61. Van der Hammen, T, 1971. The Upper Quaternary stratigraphy of the Dinkel valley. In The Upper Quaternary of the Dinkel valley. Van der Hammen, T, Wijmstra, T.A. (eds). Mededelingen Rijks Geologische Dienst N.S. 22: 81–85.
  • 63. Vandenberghe, D, Kasse, C, Hossain, SM, De Corte, F, Van den Haute, P, Fuchs, M, and Murray, AS, 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 73-86, DOI: 10.1002/jqs.806.
  • 64. Vandenberghe DAG, Derese C, Kasse C, and Van den Haute P, 2013. Late Weichselian (fluvio-) aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68: 96-113, DOI: 10.1016/j.quascirev.2013.02.009.
  • 65. Vandenberghe, J, 1983. Late Weichselian river dune formation Grote Nete valley, central Belgium. Zeitschrift für Geomorphologie. Supplementband 45: 251–263.
  • 66. Vandenberghe, J, 2007. Cryoturbation structures. In: Elias, SA, ed., Encyclopedia of Quaternary Science 3. Elsevier: 2147– 2153. DOI: 10.1016/B0-44-452747-8/00109-5
  • 67. Vandenberghe, J, French, HM, Gorbunov, A, Marchenko, S, Velichko, AA, Jin, H, Cui, Z, Zhang, T, and Wan, X, 2014. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43: 652–666, DOI: 10.1111/ bor.12070.
  • 68. van Huissteden, J, and Kasse, C, 2001. Detection of rapid climate change in Last Glacial fluvial successions in the Netherlands. Global and Planetary Change 28: 319–339, DOI: 10.1016/ S0921-8181(00)00082-5.
  • 69. Zeeberg, JJ, 1998. The European sand belt in eastern Europe – and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27: 127-139, DOI: 10.1111/j.1502- 3885.1998.tb00873.x.
  • 70. Zieliński, P, 2016. Regionalne i lokalne uwarunkowania późnovistuliańskiej depozycji eolicznej w środkowej części europejskiego pasa piaszczystego (Regional and local conditions of the LateVistulian aeolian deposition in the central part of the European sand belt). Lublin, Wydawnictwo UMCS
  • 71. Zieliński, P, Sokołowski, RJ, Fedorowicz, S, and Zaleski, I, 2014. Periglacial structures within fluvio-aeolian successions of the end of the Last Glaciation – examples from SE Poland and NW Ukraine. Boreas 43: 712-721, DOI: 10.1111/bor.12052.
  • 72. Zieliński, P, Sokołowski, RJ, Woronko, B, Jankowski, M, Fedorowicz, S, Zaleski, I, Molodkov, A, and Weckwerth, P, 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386: 30-41, DOI: 10.1016/j.quaint.2014.08.013.
  • 73. Zieliński P, Sokołowski RJ, Fedorowicz S, Woronko B, Hołub B, Jankowski M, Kuc M, and Tracz M, 2016. Depositional conditions on an alluvial fan at the turn of Weichselian and Holocene – case study of Żmigród Basin (SW Poland). Geologos 22: 105-120, DOI: 10.1515/logos-2016-0012.
  • 74. Zieliński, P, Sokołowski, RJ, Jankowski, M, Standzikowski, K, and Fedorowicz, S, 2019. The climatic control of sedimentary environment changes during the Weichselian–An example from the Middle Vistula Region (eastern Poland). Quaternary International 501: 120–134, DOI: 10.1016/j.quaint.2018.04.036.
  • 75. Zieliński, T, 2014. Sedymentologia. Osady rzek i jezior (Sedimentology. Deposits of rivers and lakes). Poznań Wydawnictwo Naukowe UAM. pp. 594 (in Polish).
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eee4bd83-21ba-4abd-927b-7783aa883b91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.