PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nutrient Removal and Biomass Production by Culturing Saccharomyces Cerevisiae in Parboiled Rice Effluent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to evaluate the potential of Saccharomyces cerevisiae in the treatment of rice parboiling effluent (PE) and biomass production. PE was inoculated with S. cerevisiae at 1.2×104 CFU mL-1 and cultured in shaker at 28 °C and 180 rpm for 72 h. PE supplied the required nutrients for S. cerevisiae growth, reaching a biomass of ± 8.2 g·L−1, cell viability of ± 2×1011 CFU mL−1 and removals of 74%, 56% and 17% for total Kjedahl nitrogen, chemical oxygen demand and phosphorus, respectively. The versatile of S. cerevisiae supported the direct and non-supplemented cultivation in PE, resulting in high removals of nutrient and biomass production and represent an alternative method to reduce the environmental impact of rice industry and an alternative process to obtain marketable yeast biomass.
Twórcy
  • Technological Development Center, Federal University of Pelotas, Campus Universitario S/N, 96160-000, Pelotas, Brazil
  • Technological Development Center, Federal University of Pelotas, Campus Universitario S/N, 96160-000, Pelotas, Brazil
  • Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Universitario S/N, 96160-000, Pelotas, Brazil
  • Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Universitario S/N, 96160-000, Pelotas, Brazil
  • Sul-rio-grandense Federal Institute of Education, Science and Technology, 96020-000, Pelotas, Brazil
  • Technological Development Center, Federal University of Pelotas, Campus Universitario S/N, 96160-000, Pelotas, Brazil
Bibliografia
  • 1. Abinandan, S., R. Bhattacharya, and S. Shanthakumar. 2015. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). International Journal of Phytoremediation, 17 (4): 377–381. https://doi.org/10.1080/15226514.2014.910167.
  • 2. Amato G.W, Carvalho J.L.V, and Silveira F.S. 2002. Arroz parboilizado: tecnologia limpa, produto nobre. Porto Alegre: Ricardo Lenz.
  • 3. Bastos, R.G., M.A. Bonini, L.Q. Zepka, E. Jacob-Lopes, and M. I. Queiroz. 2015. Treatment of rice parboiling wastewater by cyanobacterium Aphanothece microscopica Nägeli with potential for biomass products. Desalination and Water Treatment, 56 (3): 608–614. https://doi.org/10.1080/19443994.2014.937758.
  • 4. Broadway, P., J. Carroll, and N. Sanchez. 2015. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review. Microorganisms, 3 (3): 417–427. https://doi.org/10.3390/microorganisms3030417.
  • 5. Champagne C.P., Gaudreau H, and Conway J. 2003. Effect of the production or use of mixtures of bakers’ or brewers’ yeast extracts on their ability to promote growth of lactobacilli and pediococci. Eletro J Biotech, 6: 185–197.
  • 6. Divya M, Aanand S, Srinivasan A, and Ahilan B. 2015. Bioremediation: An eco-friendly tool for effluent treatment: A review. Journal of Applied Research, 12: 530–537.
  • 7. Fehrenbach, G., L. Fabio, and S. Diego. 2021. Combined treatment with α-amylase and Saccharomyces cerevisiae culture for nutrient removal and biomass production in effluent from rice parboilization. Desalination and Water Treatment, 200–205. https://doi.org/10.5004/dwt.2021.27886.
  • 8. Ferreira, I.M.P.L.V.O., O. Pinho, E. Vieira, and J.G. Tavarela. 2010. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science & Technology, 21,(2): 77–84. https://doi.org/10.1016/j.tifs.2009.10.008.
  • 9. Gaboardi, G., D. Gil de los Santos, L. Mendes, L. Centeno, T. Meireles, S. Vargas, E. Griep, A. de Castro Jorge Silva, Â.N. Moreira, and F.R. Conceição. 2018. Bioremediation and biomass production from the cultivation of probiotic Saccharomyces boulardii in parboiled rice effluent. Journal of Environmental Management, 226: 180–186. https://doi.org/10.1016/j.jenvman.2018.08.027.
  • 10. Gancedo, J.M. 1998. Yeast Carbon Catabolite Repression. Microbiology and Molecular Biology Reviews, 62 (2): 334–361. https://doi.org/10.1128/MMBR.62.2.334–361.1998.
  • 11. Gerber M. 2002. Tratabilidade de efluentes da parboilização de arroz em sistema com plantas aquáticas emergentes. Pelotas.
  • 12. Gil de los Santos, D., C. Gil Turnes, and F. Rochedo Conceição. 2012. Bioremediation of Parboiled Rice Effluent Supplemented with Biodiesel-Derived Glycerol Using Pichia pastoris X-33. The Scientific World Journal, 2012: 1–5. https://doi.org/10.1100/2012/492925.
  • 13. Karunaratne H.W.G.I. 2002. Removal of pollutants in parboiled paddy wastewater. Moratuwa.
  • 14. Kumar, A., A. Roy, R. Priyadarshinee, B. Sengupta, A. Malaviya, D. Dasguptamandal, and T. Mandal. 2017. Economic and sustainable management of wastes from rice industry: combating the potential threats. Environmental Science and Pollution Research, 24 (34): 26279–26296. https://doi.org/10.1007/s11356–017–0293–7.
  • 15. Lapeña, D., G. Kosa, L.D. Hansen, L.T. Mydland, V. Passoth, S.J. Horn, and V.G.H. Eijsink. 2020. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microbial Cell Factories, 19 (1): 19. https://doi.org/10.1186/s12934–020–1287–6.
  • 16. Lara-Flores, M., M.A. Olvera-Novoa, B.E. Guzmán-Méndez, and W. López-Madrid. 2003. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216 (1–4): 193–201. https://doi.org/10.1016/S0044–8486(02)00277–6.
  • 17. Machado, M.D., E.V. Soares, and H.M.V.M. Soares. 2010. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: application to the treatment of real electroplating effluents containing multielements. Journal of Chemical Technology & Biotechnology, 85 (10): 1353–1360. https://doi.org/10.1002/jctb.2440.
  • 18. Mukherjee, C., R. Chowdhury, T. Sutradhar, M. Begam, S. M. Ghosh, S. K. Basak, and K. Ray. 2016. Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Research, 19: 225–236. https://doi.org/10.1016/j.algal.2016.09.009.
  • 19. Paraginski, R.T., V. Ziegler, A. Talhamento, M.C. Elias, and M. de Oliveira. 2014. Propriedades tecnológicas e de cocção em grãos de arroz condicionados em diferentes temperaturas antes da parboilização. Brazilian Journal of Food Technology, 17 (2): 146–153. https://doi.org/10.1590/bjft.2014.021.
  • 20. Queiroz M, and Koetz P.R. 1997. Caracterização do efluente da parboilização do arroz. Revista Brasileira de Agrociência, 3: 139–143.
  • 21. Rakin, M., J. Baras, M. Vukasinovic, and M. Maksimovic. 2004. The examination of parameters for lactic acid fermentation and nutritive value of fermented juice of beetroot, carrot and brewer’s yeast autolysate. Journal of the Serbian Chemical Society, 69 (8–9): 625–634. https://doi.org/10.2298/JSC0409625R.
  • 22. Rodrigues Reis, C. E., and B. Hu. 2017. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Frontiers in Energy Research, 5. https://doi.org/10.3389/fenrg.2017.00007.
  • 23. Rumsey, G.L., J.E. Kinsella, K.J. Shetty, and S.G. Hughes. 1991. Effect of high dietary concentrations of brewer’s dried yeast on growth performance and liver uricase in rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 33 (3–4): 177–183. https://doi.org/10.1016/0377–8401(91)90058-Z.
  • 24. Shahbandeh M. 2022. World production volume of milled rice from 2008/2009 to 2021/2022 (in milion metric tons). Statista.
  • 25. Suarez C, and Guevara C A. 2018. Probiotic Use of Yeast Saccharomyces Cerevisiae in Animal Feed. Res J of Zoology, 1: 1–6.
  • 26. Wang, X., K. Xia, X. Yang, and C. Tang. 2019. Growth strategy of microbes on mixed carbon sources. Nature Communications, 10 (1): 1279. https://doi.org/10.1038/s41467–019–09261–3.
  • 27. Wichitsathian, B., S. Sindhuja, C. Visvanathan, and K. H. Ahn. 2004. Landfill Leachate Treatment by Yeast and Bacteria Based Membrane Bioreactors. Journal of Environmental Science and Health, Part A, 39 (9): 2391–2404. https://doi.org/10.1081/ESE-200026295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eedf1dad-baec-41e8-89a7-d1bcc1855614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.