Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
The hydrolysis of lignocellulosic biomass results in the production of so-called fermentation inhibitors, which reduce the efficiency of biohydrogen production. To increase the efficiency of hydrogen production, inhibitors should be removed from aqueous hydrolysate solutions before the fermentation process. This paper presents a new approach to the detoxification of hydrolysates with the simultaneous formation of in-situ deep eutectic solvents (DES). In the first stage of the study, inhibitors were identified in the real hydrolysate samples using high-performance liquid chromatography (HPLC). Four monoterpenes were tested for their potential to extract furfural (FF) with simultaneous DES formation. An optimization process of the most important parameters affecting the extraction process and DES formation (Thymol:FF) was conducted using the Central Composite Design (CCD) model. A temperature of 40 ◦C, pH of 7, mHBD : mHYD ratio of 2:1, and time of 50 min were selected as the optimal conditions. These results indicate the high efficiency of FF removal from hydrolysates (92.1–94.6%) in a one-step process. Meanwhile, the structural properties of the formed DES measured by Fourier-transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance spectroscopy (NMR) differed only slightly from those of the DES composed of pure substances (Furfural and Thymol).
Rocznik
Tom
Strony
art. no. e18
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdansk, Poland
autor
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdansk, Poland
autor
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdansk, Poland
autor
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdansk, Poland
Bibliografia
- 1. Abbott A.P., Capper G., Gray S., 2006. Design of improved deep eutectic solvents using hole theory. Chem. Eur. J. of Chem. Phys., 7, 803–806. DOI: 10.1002/cphc.200500489.
- 2. Almashjary K.H., Khalid M., Dharaskar S., Jagadish P., Walvekar R., Gupta T.C.S.M., 2018. Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents. Fuel, 234, 1388–1400. DOI: 10.1016/j.fuel.2018.08.005.
- 3. Cañada-Barcala A., Rodríguez-Llorente D., López L., Navarro P., Hernández E., Águeda V.I., Álvarez-Torrellas S., Parajó J.C., Rivas S., Larriba M., 2021. Sustainable production of furfural in biphasic reactors using terpenoids and hydrophobic eutectic solvents. ACS Sustain. Chem. Eng., 9 10266–10275. DOI: 10.1021/acssuschemeng.1c02798.
- 4. Carvalho G.B.M, Mussatto S.I., Cândido E.J., Almeida e Silva J.B., 2006. Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J. Chem. Technol. Biotechnol., 81, 152– 157. DOI: 10.1002/jctb.1372.
- 5. Cui P., Liu H., Xin K., Yan H., Xia Q., Huang Y., Li. Q., 2018. Liquid-liquid equilibria for the ternary system of water + furfural + solvents at 303.15 and 323.15 K under atmospheric pressure. J. Chem. Thermodyn., 127, 134–144. DOI: 10.1016/j.jct.2018.01.027.
- 6. Darwish A.S., Lemaoui T., AlYammahi J., Taher H., Benguerba Y., Banat F., AlNashef I.M., 2023. Molecular insights into potential hydrophobic deep eutectic solvents for furfural extraction guided by COSMO-RS and machine learning. J. Mol. Liq., 379, 121631. DOI: 10.1016/J.MOLLIQ.2023.121631.
- 7. Dash S.K., Chakraborty S., Elangovan D., 2023. A brief review of hydrogen production methods and their challenges. Energies, 16, 1141. DOI: 10.3390/en16031141.
- 8. Dickakain G., 1994. Process for inhibiting oxidation and polymerization of furfural and its derivatives. Patent No. US5332842A.
- 9. Dietz C.H.J.T., Gallucci F., van Sint Annaland M., Held C., Kroon M.C., 2019. 110th Anniversary: Distribution coefficients of furfural and 5-hydroxymethylfurfural in hydrophobic deep eutectic solvent + water systems: Experiments and perturbedchain statistical associating fluid theory predictions. Ind. Eng. Chem. Res., 58, 4240–4247. DOI: 10.1021/acs.iecr.8b06234.
- 10. Doddapaneni T.R.K.C., Jain R., Praveenkumar R., Rintala J., Romar H., Konttinen J., 2018. Adsorption of furfural from torrefaction condensate using torrefied biomass. Chem. Eng. J., 334, 558–568. DOI: 10.1016/j.cej.2017.10.053.
- 11. Eseyin A.E., Steele P.H., 2015. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem., 3, 42-47. DOI: 10.14419/ijac.v3i2.5048.
- 12. Grzenia D.L., Schell D.J., Wickramasinghe S.R., 2012. Membrane extraction for detoxification of biomass hydrolysates. Bioresour. Technol., 111, 248–254. DOI: 10.1016/j.biortech.2012.01.169.
- 13. Guo X.M., Trably E., Latrille E., Carrère H., Steyer J.-P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy, 35, 10660–10673. DOI: 10.1016/j.ijhydene.2010.03.008.
- 14. Haghbakhsh R., Parvaneh K., Raeissi S., Shariati A., 2018. A general viscosity model for deep eutectic solvents: The free volume theory coupled with association equations of state. Fluid Phase Equilib., 470, 193–202. DOI: 10.1016/j.fluid.2017.08.024.
- 15. Kucharska K., Makoś-Chełstowska P., Słupek E., Gębicki J., 2021. Management of dark fermentation broth via bio re- fining and photo fermentation. Energies, 14, 6268. DOI: 10.3390/en14196268.
- 16. Lee C.B.T.L., Wu T.Y., Ting C.H., Tan J.K., Siow L.S., Cheng C.K., Jahim J.M., Mohammad A.W., 2019. One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour. Technol., 278, 486–489. DOI: 10.1016/j.biortech.2018.12.034.
- 17. Lozano H.R., Martínez F., 2006. Thermodynamics of partitioning and solvation of ketoprofen in some organic solvent/buffer and liposome systems. Rev. Bras. Cienc. Farm., 42, 601–613. DOI: 10.1590/S1516-93322006000400016.
- 18. Ludwig D., Amann M., Hirth T., Rupp S., Zibek S., 2013. Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour. Technol., 133, 455–461. DOI: 10.1016/j.biortech.2013.01.053.
- 19. Madani-Tonekaboni M., Kamankesh M., Mohammadi A., 2015. Determination of furfural and hydroxymethyl furfural from baby formula using dispersive liquid-liquid microextraction coupled with high performance liquid chromatography and method optimization by response surface methodology. J. Food Compos. Anal., 40, 1–7. DOI: 10.1016/j.jfca.2014.12.004.
- 20. Makoś P., Boczkaj G., 2019. Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach. J. Mol. Liq., 296, 111916. DOI: 10.1016/j.molliq.2019.111916.
- 21. Makoś P., Przyjazny A., Boczkaj G., 2018. Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A, 1570, 28–37. DOI: 10.1016/j.chroma.2018.07.070.
- 22. Makoś P., Słupek E., Gębicki J., 2020. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies. J. Mol. Liq., 308, 113101. DOI: 10.1016/j.molliq.2020.113101.
- 23. Makoś-Chełstowska P., Słupek E., Gębicki J., 2021. Deep eutectic solvent-based green absorbents for effective volatile organochlorine compounds removal from biogas. Green Chem., 23, 4814-4827. DOI: 10.1039/d1gc01735g.
- 24. Makoś-Chełstowska P., Słupek E., Kucharska K., Kramarz A., Gębicki J., 2022a. Efficient extraction of fermentation inhibitors by means of green hydrophobic deep eutectic solvents. Molecules, 27, 157. DOI: 10.3390/molecules27010157.
- 25. Makoś-Chełstowska P., Słupek E., Małachowska A., 2022b. Superhydrophobic sponges based on green deep eutectic solvents for spill oil removal from water. J. Hazard. Mater., 425, 127972. DOI: 10.1016/j.jhazmat.2021.127972.
- 26. McGaughy K., Reza M.T., 2020. Liquid-liquid extraction of furfural from water by hydrophobic deep eutectic solvents: Improvement of density function theory modeling with experimental validations. ACS Omega, 5, 22305–22313. DOI: 10.1021/acsomega.0c02665.
- 27. Mjalli F.S., Naser J., Jibril B., Alizadeh V., Gano Z., 2014. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties. J. Chem. Eng. Data, 59, 2242–2251. DOI: 10.1021/je5002126.
- 28. Mokhtar W.N.A.W., Bakar W.A.W.A., Ali R., Kadir A.A.A, 2014. Deep desulfurization of model diesel by extraction with N; N-dimethylformamide: Optimization by box–Behnken design. J. Taiwan Inst. Chem. Eng., 45, 1542–1548. DOI: 10.1016/J.JTICE.2014.03.017.
- 29. Palmqvist E., Hahn-Hägerdal B., 2000. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol., 74, 25–33. DOI: 10.1016/S0960-8524(99)00161-3.
- 30. Pan L., He M., Wu B., Wang Y., Hu G., Ma K., 2019. Simultaneous concentration and detoxification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production. J. Clean. Prod., 227, 1185–1194. DOI: 10.1016/j.jclepro.2019.04.239.
- 31. Parkhey P., Mazumdar B., Mohan S.V., 2019. Chapter 15 – Exergy analysis of biomass-based hydrogen production processes, In: Pandey A., Mohan S.V., Chang J.-S., Hallenbeck P.C., Larroche C. (Eds.), Biomass, Biofuels, Biochemicals: Biohydrogen. Second edition. Elsevier, 383–390. DOI: 10.1016/B978-0-444-64203-5.00015-0.
- 32. Rajivgandhi M.M.C., Singaravelu M., 2014. Upgrading biogas to biomethane by physical absorption process. IJAEB, 7, 639–644. DOI: 10.5958/2230-732x.2014.01370.9.
- 33. Rathi B.S., Kumar P.S., Rangasamy G., Rajendran S., 2022. A critical review on biohydrogen generation from biomass. Int. J. Hydrogen Energy. DOI: 10.1016/J.IJHYDENE.2022.10.182.
- 34. Redondas V., Gómez X., García S., Pevida C., Rubiera F., Morán A., Pis J.J, 2012. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Manage., 32, 60–66. DOI: 10.1016/j.wasman.2011.09.003.
- 35. Rodionova M.V., Bozieva A.M., Zharmukhamedov S.K., Leong Y.K., Lan J.C.-W., Veziroglu A., Veziroglu T.N., Tomo T., Chang J.-S., Allakhverdiev S.I., 2022. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int. J. Hydrogen Energy, 47, 1481–1498. DOI: 10.1016/j.ijhydene.2021.10.122.
- 36. Roque L.R., Morgado G.P., Nascimento V.M., Ienczak J.L., Rabelo S.C., 2019. Liquid-liquid extraction: A promising alternative for inhibitors removing of pentoses fermentation. Fuel, 242, 775–787. DOI: 10.1016/j.fuel.2018.12.130.
- 37. Wang Z., Souryadeep B., Dionisios G.V., 2021. Extraction of furfural and furfural/5-hydroxymethylfurfural from mixed lignocellulosic biomass-derived feedstocks. ACS Sustainable Chem. Eng., 9, 7489–7498. DOI: 10.1021/acssuschemeng.1c00982.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eede2623-d439-4eab-ac54-51567b8f4257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.