PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of Poly(Acrylic Acid-co-Maleic Acid) Sodium Salt Intercalated Montmorillonite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intercalation into interlayer spaces of montmorillonite (MMT), obtained from natural calcium bentonite, was investigated. Modification of MMT was performed by the poly(acrylic acid-co-maleic acid) sodium salt (co-MA/AA). Efficiency of modification of MMT by sodium salt co-MA/AA was assessed by the infrared spectroscopic methods (FTIR), X-ray diffraction method (XRD) and spectrophotometry UV-Vis. It was found, that MMT can be relatively simply modified with omitting the preliminary organofilisation – by introducing hydrogel chains of maleic acid-acrylic acid copolymer in a form of sodium salt into interlayer galleries. A successful intercalation by sodium salt of the above mentioned copolymer was confirmed by the powder X-ray diffraction (shifting the reflex (001) originated from the montmorillonite phase indicating an increase of interlayer distances) as well as by the infrared spectroscopy (occurring of vibrations characteristic for the introduced organic macromolecules). The performed modification causes an increase of the ion exchange ability which allows to assume that the developed hybrid composite: MMT-/maleic acid-acrylic acid copolymer (MMT-co- MA/AA) can find the application as a binding material in the moulding sands technology. In addition, modified montmorillonites indicate an increased ability for ion exchanges at higher temperatures (TG-DTG, UV-Vis). MMT modified by sodium salt of maleic acid-acrylic acid copolymer indicates a significant shifting of the loss of the ion exchange ability in the direction of the higher temperature range (500–700°C).
Rocznik
Tom
Strony
67--75
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH - University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • AGH - University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Brigatti, M.F., Galan, E., Theng, B.K.G. (2006). Structures and mineralogy of clay minerals. handbook of clay science. Development in Clay Science. Amsterdam: Vol. 1. Elsevier, 19-86. doi.org/10.1016/S1572-4352(05)01002-0.
  • [2] Adams, J.M., McCabe, R.W. (2006). Clay minerals as catalysts. Handbook of Clay Science. Development in Clay Science. Amsterdam: Vol. 1. Elsevier, 541-582. doi.org/ 10.1016/S1572-4352(05)01017-2.
  • [3] Önal, M. (2006). Physicochemical properties of bentonites: An overview. Commun. Fac. Sci. Univ. Ank. Series B. 52, 7-21.
  • [4] Natkański, P. & Kuśtrowski, P. (2013). Influence of crosslinking degree on Cu (II) and Fe (III) adsorption capacity of hydrogel/montmorillonite composites. Polymers. 53, 512-518.
  • [5] Rybiński, P. & Janowska, G. (2013). Flammability and other properties of elastomeric materials and nanomaterials. Part I. Nanocomposites of elastomers with montmorillonite or halloysite. Polymers. 58(7-8), 328-341.
  • [6] Ait-Akbour, R., Boustingorry, P., Leroux, F., Leising, F. & Taviot-Guého, C. (2015). Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science. 437, 227-234. DOI.org/10.1016/j.jcis. 2014.09.027.
  • [7] Bhattacharya, S.S., Sen, K.K., Sen, S.O., Banerjee, S., Kaity, S., Ghosh, A.K. & Ghosh, A. (2011). Synthesis and characterization of poly(acrylic acid)/modified bentonite superabsorbent polymer. Int. J. Polym. Mater. Polym. Biomater. 60, 1015-1025. DOI.org/10.1080/00914037. 2011.557807.
  • [8] Rafiei, H.R., Shirvani, M. & Ogunseitan, O.A. (2016). Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite. Applied Water Science. 6, 331-338. DOI.org/10.1007/s13201-014-0228-0.
  • [9] Solhi, L., Atai, M., Nodehi, A., Imani, M., Ghaemi, A. & Khosravi, K. (2012). Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dental Materials Journal. 28, 369-377. DOI.org/10.1016/ j.dental.2011.11.010.
  • [10] Li, M., Wu, Z., Kao, H. & Tan, J. (2011). Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers. Manag. 52, 3275-3281. DOI.org/10.1016/ j.enconman.2011.05.015.
  • [11] Tran, N.H., Dennis, G.R., Milev, A.S., Kannangara, G.S.K., Wilson, M.A. & Lamb, R.N. (2005). Interactions of sodium montmorillonite with poly(acrylic acid). Journal of Colloid and Interface Science. 290, 392-396. DOI.org/10.1016/ j.jcis.2005.04.069.
  • [12] Xiao, J., Chen, Y., Zhao, W. & Xu, J. (2013). Sorption behavior of U(VI) onto Chinese bentonite: Effect of pH, ionic strength, temperature and humic acid. Journal of Molecular Liquids. 188, 178-185. https://doi.org/10.1016/ j.molliq.2013.10.008.
  • [13] Drzycimska, A. & Spychaj, T. (2008). Hybrid hydrophilic polymer/montmorillonite systems. Polymers. 53, 169-175.
  • [14] Nones, J., Riella, H.G., Trentin, A.G. & Nones, J. (2015). Effects of bentonite on different cell types: A brief review. Applied Clay Science. 105-106, 225-230. DOI.org/10.1016/ j.clay. 2014.12.036.
  • [15] Zhang, J., Yuan, K., Wang, Y.P., Gu, S.J., Zhang, & Tang, S. (2007). Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Materials Letters. 61, 316-320. DOI.org/10.1016/ j.matlet.2006. 04.055.
  • [16] Shirsath, S.R., Hage, A.P., Zhou, M., Sonawane, S.H. & Ashokkumar, M. (2011). Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination. 281, 429-437. DOI.org/10.1016/ j.desal.2011.08.031.
  • [17] Yang, M., Liu, B.T., Gao, G., Liu, X.L. & Liu, F.Q. (2010). Poly(maleic anhydride-co-acrylic acid)/poly(ethylene glycol) hydrogels with ph- and ionic-strength-responses. Chinese Journal of Polymer Science. 28, 951-959. DOI.org/10.1007/s10118-010-9191-x.
  • [18] Kacperski, M. (2004). Preliminary works on influence of modifier type on properties of epoxy/bentonite nanocomposites. Composites 4, 28-32.
  • [19] Oleksy, M. & Heneczkowski, M. (2005). Modified bentonites as active adsorbents of styrene vapours. Polymers 50, 143-148.
  • [20] Gołębiewski, J., Różański, A. & Gałęski, A. (2006). Study on the process of preparation of polypropylene nanocomposite with montmorillonite. Polymers 51, 374-381.
  • [21] Jurkowski, B., Olkhov, Y.A., Kelar, K. & Olkhova, O.M. (2002). Thermomechanical study of low-density polyethylene, polyamide 6 and its blends. European Polymer Journal. 38, 1229-1236.
  • [22] Janik, J. (2004). Properties and structure of composites polypropylene/clay. Composites. 4, 28-32.
  • [23] Atanda, P.O., Olorunniwo, O.E., Alonge, K. & Oluwole, O.O. (2012). Comparison of bentonite and cassava starch on the moulding properties of silica sand. International Journal of Materials and Chemistry. 2, 132-136. DOI.org/10.5923/ j.ijmc.20120204.03.
  • [24] Beňo, J., Jelínek, P., Špirutová, N. & Mikšovský, F. (2011). Efficiency of additives of the polysaccharide type on physical properties of bentonite mixtures. Archives of Foundry Engineering. 11, 5-8.
  • [25] Holtzer, M., Grabowska, B., Żymankowska-Kumon, S., Kwaśniewska-Królikowska, D., Dańko, R., Solarski, W. & Bobrowski, A. (2012). Harmfulness of moulding sands with bentonite and lustrous carbon carriers. Metallurgy. 51, 437-440.
  • [26] Boylu, F. (2011). Optimization of foundry sand characteristics of soda-activated calcium bentonite. Applied Clay Science. 52, 104-108. DOI.org/10.1016/j.clay. 2011.02.005.
  • [27] Holtzer, M., Bobrowski, A. & Grabowska, B. (2011). Montmorillonite: a comparison of methods for its determination in foundry bentonites. Metallurgy. 50, 119-122.
  • [28] Grabowska, B., Holtzer, M., Kot, I. & Kwaśniewska-Królikowska, D. (2011). Spectrophotometry application for the montmorillonite content determination in moulding sands with bentonite. Metall. Foundry Eng. 37, 5-8.
  • [29] Ripke, S.J. & Kawatra, S.K. (2000). Can fly-ash extend bentonite binder for iron ore agglomeration? International Journal of Mineral Processing. 60, 181-DOI.org/10.1016/ S0301-7516(00)00015-6.
  • [30] Meng, X., Zhang, Y., Zhou, F. & An, Q. (2014). Influence of carbon ash on the rheological properties of bentonite dispersions. Applied Clay Science. 88-89, 129-133. DOI.org/ 10.1016/j.clay.2013.12.001.
  • [31] Chakherlou, T.N., Mahdinia, Y.V. & Akbari, A. (2011). Influence of lustrous carbon defects on the fatigue life of ductile iron castings using lost foam process. Materials & Design. 32, 162-169. DOI.org/10.1016/j.matdes. 2010.06.015.
  • [32] Tabak, A., Kaya, M., Yilmaz, N., Meral, K., Onganer, Y., Caglar, B. & Sungur, O. (2014). Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study. Journal of Molecular Structure. 1059, 271-279. DOI.org/10.1016/ j.molstruc.2013.11.051.
  • [33] Beşün, N., Peker, S., Köktürk, U. & Yilmaz, H. (1997). Structure of starch-bentonite gels. Colloid and Polymer Science. 275, 378-389. DOI.org/10.1007/s003960050095.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eed3546d-84de-40b0-9f81-cac373f4f028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.