PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using HSM technology in machining of thin-walled aircraft structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Subtracting manufacturing technologies have entered that realm of production possibilities which, even a few years ago, could not be directly adapted to direct production conditions. The current machines, i.e. heavy, rigid cutting machines using high spindle speed and high feed speed, allow for manufacturing very thin and relatively long parts for use in the automotive or aerospace industry. In addition, the introduction and implementation of new 70XX aluminium alloys with high strength parameters, as well as monolithic diamond cutting tools for special machining, have had a significant impact on the introduction of high-speed machining (HSM) technologies. The main ad-vantage of the applied manufacturing method is obtaining a very good smoothness and surface roughness, reaching even Sz = 6–10 μm and Sa <3 μm, and about four times faster and more efficient machining compared to conventional machining (for the beam part). Moreover, fixed and repeatable milling process of the HSM method, reduction of operational control, easy assembly of components and increase in the finishing efficiency compared to other methods of plastic processing (forming) are other benefits. The authors present a method using HSM for the manufacturing of aircraft parts, such as the chassis beam at the front of a commuter aircraft. The chassis beam assembly is made of two parts, front and rear, which – through a bolted connection – form a complete element replacing the previous part made using traditional technology, i.e., cavity machining, bending and plastic forming. The implementation of HSM technology eliminates many operations related to the construction of components, assembling the components (riveting) and additional controls during construc-tion and assembly.
Rocznik
Strony
27--33
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • SZEL-TECH, R&D Dep., Sołtyka st. 16, 39-300 Mielec Poland
  • AGH University of Science and Technology, WIMiR, Al. Mickiewicza 30-B2, 30-059 Kraków, Poland
  • Rzeszów University of Technology, KKM, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • AGH University of Science and Technology, WIMiR, Al. Mickiewicza 30-B2, 30-059 Kraków, Poland
autor
  • Rzeszów University of Technology, ZT, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Adamski W. Manufactuing development strategies in aviation indus-try. Advances in Manufacturing Science and Technology. 2010; 34(3):73-84.
  • 2. Bałon P, Rejman E, Smusz R, Szostak J, Kiełbasa, B. Implementa-tion of high speed machining in thin-walled aircraft integral elements. DE GRUYTER Open Engineering. 2018; 8:162-169.
  • 3. Bałon P, Szostak J, Kiełbasa B, Rejman E, Smusz R. Application of High Speed Machining Technology in Aviation. 21st International ESAFORM Conference on Material Forming. 2018.
  • 4. Bałon P, Rejman E, Smusz R, Szostak J, Kiełbasa, B. High Speed Milling in thin-walled aircraft structures. Applied Computer Science. 2018; 14(2):82-95.
  • 5. Burek J, Płodzień M. Wysoko wydajna obróbka części ze stopów aluminium o złożonych kształtach. Mechanik. 2012; 7:542-549.
  • 6. Calatoru VD, Balazinski W, Mayer JRR, Paris H, L’Esperance G. Diffusion wear mechanism during high-speed machining of 7475-T7351 aluminium alloy with carbide end mills. Wear. 2008; 265(11-12):1793-1800.
  • 7. Feld M. Obróbka skrawaniem stopów aluminium. Wydawnictwo Naukowo-Techniczne. Warsaw; 1984.
  • 8. Kiełbasa B, Bałon P, Świątoniowski A. Fatigue fracture analysis of composite plates with an elliptical hole. Strength of Materials. 2017; 49(4).
  • 9. Kłonica M, Matuszak J, Pieśko P, Włodarczyk M, Zaleski K, Kuczma-szewski J, Pałka T, RusinekR, Zagórski I. Obróbka skrawaniem sto-pów aluminium i magnezu. Monografie – Politechnika Lubelska; 2015.
  • 10. Kuczmaszewski J, Pieśko P, Zawada-Michałowska M. Influence of Milling Strategies of Thin-walled Elements on Effectiveness of their Manufacturing. Procedia Engineering. 2017; 182:381-186.
  • 11. Lundblad M. Influence of Cutting Tool Geometry on Residual Stress in the Workpiece, Proc. Third Wave AdvantEdge User’s Conference. Atlanta, GA, Paper 7; 2002.
  • 12. Mativenga PT, Hon KKB. An experimental study of cutting force in high speed end milling and implications for dynamic force modeling. Journal of Manufacturing Science and Engineering. 2005; 127(2): 251-261.
  • 13. Pieśko P, Zagórski I. Analiza porównawcza metod frezowania HSM, HPC oraz frezowania konwencjonalnego wysokokrzemowych stopów aluminium. Postępy Nauki i Technik. 2011; 7:219-226.
  • 14. Shih AJ, Yang HTY. Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting. Int. J. Num. Meth. Eng. 1993; 36:1487-1507.
  • 15. Morey B. High-speed machining for aerospace. Manuf. Eng. 2008; 140(3).
  • 16. Shulz H, Dashchenko A. High speed machining Chapter 7, Manufac-turing Technologies for Machines of the Future 21st Century Tech-nologies,
  • 17. Dewes RC, Apsinwall DK. Review of Ultra High Speed Milling of Hardened Steels. Journal of Materials Processing Technology, 1997; 69(1-3);1-17.
  • 18. Hon KKB. The Impact of High Speed Machining on Computing and Automation. International Journal of Automation and Computing. 2006; 1: 63-68.
  • 19. Mativenga PT. Hon KKB. An Experimental Study of Cutting Force in High Speed End Milling and Implications for Dynamic Force Model-ling. Journal of Manufacturing Science and Engineering, Transac-tions of the American Society of Mechanical Engineers, 2005; 127(2):251–261.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eed177a6-69ca-4cec-9888-9e155140a525
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.