Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fractional descriptor reduced-order observers for fractional descriptor continuous-time linear systems are proposed. Necessary and sufficient conditions for the existence of the observers are established. The design procedure of the observers is given and is demonstrated on two numerical examples.
Rocznik
Tom
Strony
889--895
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok
Bibliografia
- [1] T. Kaczorek, “Positive fractional continuous-time linear systems with singular pencils”, Bull. Pol. Ac.: Tech. 60 (1), 9-12 (2012).
- [2] T. Kaczorek, “Descriptor fractional linear systems with regular pencils”, Asian J. Control 15 (4), 1051-1064 (2013).
- [3] T. Kaczorek, “Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci. 18 (2), 223-228 (2008).
- [4] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
- [5] I. N’Doye, M. Darouach, H. Voos, and M. Zasadzinski, “Design of unknown input fractional-order observers for fractionalorder systems”, Int. J. Appl. Math. Comput. Sci. 23 (3), 491-500 (2013).
- [6] T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders”, IEEE Trans. on Circuits and Systems 58 (7), 1203-1210 (2011).
- [7] M. Dodig and M. Stosic, “Singular systems state feedbacks problems”, Linear Algebra and its Applications 431 (8), 1267-1292 (2009).
- [8] W. Cuihong, “New delay-dependent stability criteria for descriptor systems with interval time delay”, Asian J. Control 14 (1), 197-206 (2012).
- [9] L. Dai, Singular Control Systems. Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1989.
- [10] M.M. Fahmy and J. O’Reill, “Matrix pencil of closed-loop descriptor systems: infinite-eigenvalue assignment”, Int. J. Control 49 (4), 1421-1431 (1989).
- [11] F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Co., New York, 1960.
- [12] D. Guang-Ren, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
- [13] T. Kaczorek, “Infinite eigenvalue assignment by outputfeedback for singular systems”, Int. J. Appl. Math. Comput. Sci. 14 (1), 19-23 (2004).
- [14] T. Kaczorek, Linear Control Systems, vol. 1, J. Wiley, New York, 1992.
- [15] V. Kucera and P. Zagalak, “Fundamental theorem of state feedback for singular systems”, Automatica 24 (5), 653-658 (1988).
- [16] F.L. Lewis, “Descriptor systems, expanded descriptor equation and Markov parameters”, IEEE Trans. Autom. Contr. 28 (5), 623-627 (1983).
- [17] D.G. Luenberger, “Time-invariant descriptor systems”, Automatica 14 (5), 473-480 (1978).
- [18] D.G. Luenberger, “Dynamical equations in descriptor form”, IEEE Trans. Autom. Contr. 22 (3), 312-321 (1977).
- [19] P. Van Dooren, “The computation of Kronecker’s canonical form of a singular pencil”, Linear Algebra and Its Applications 27, 103-140 (1979).
- [20] E. Virnik, “Stability analysis of positive descriptor systems”, Linear Algebra and Its Applications 429, 2640-2659 (2008).
- [21] T. Kaczorek, “Full-order perfect observers for continuous-time linear systems”, Bull. Pol. Ac.: Tech. 49 (4), 549-558 (2001).
- [22] R. Kociszewski, “Observer synthesis for linear discrete-time systems with different fractional orders”, Measurements, Automatics, Robotics 2, 376-381 (2013).
- [23] T. Kaczorek, “Fractional descriptor observers for fractional descriptor continuous-time linear system”, Archives of Control Sciences 24 (1), 27-37 (2014).
- [24] I. Podlubny, Fractional Differential Equations, Academic
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eecf6c67-8b7a-4535-b15a-5856ffb70f17