PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithm for Pythagorean Fuzzy Multi-criteria Decision Making Based on WDBA with New Score Function

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we initiate some new operators for Pythagorean fuzzy set and discuss their properties in detail. Then, a new score function of Pythagorean fuzzy number (PFN) is proposed for solving the failure problems when comparing two PFNs. Later, we present an algorithm for solving multi-criteria decision making (MCDM) problem based on Weighted Distance Based Approximation (WDBA). Finally, the effectiveness and feasibility of approach is demonstrated by some numerical examples. The salient features of the proposed method, compared to the existing Pythagorean fuzzy decision making methods, are (1) it can derive a ranking without the complex process; (2) it can obtain the optimal alternative without counterintuitive phenomena; (3) it has a great power in distinguishing the optimal alternative.
Wydawca
Rocznik
Strony
99--137
Opis fizyczny
Bibliogr. 65 poz., tab., wykr.
Twórcy
autor
  • School of Information Science and Engineering, Shaoguan University, Shaoguan, China
  • College of Computer, National University of Defense Technology, Changsha, China
Bibliografia
  • [1] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986. 20(1):87-96. doi:10.1016/S0165-0114(86)80034-3.
  • [2] Zadeh LA. Fuzzy sets. Information Control, 1965. 8(3):338-356. doi:10.1016/S0019-9958(65)90241-X.
  • [3] Yager RR. Pythagorean fuzzy subsets. In: 2013 Proc Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 24-28 June 2013, 2013 pp 57-61. doi:10.1109/IFSA-NAFIPS.2013.6608375. URL https://ieeexplore.ieee.org/abstract/document/6608375.
  • [4] Yager RR, Abbasov AM. Pythagorean Membership Grades, Complex Numbers, and Decision Making. International Journal of Intelligent Systems, 2014. 28(5):436-452. doi:10.1002/int.21584.
  • [5] Peng X, Selvachandran G. Pythagorean fuzzy set: state of the art and future directions. Artificial Intelligence Review, 2018. doi:10.1007/s10462-017-9596-9.
  • [6] Zhang XL, Xu ZS. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. International Journal of Intelligent Systems, 2014. 29(12):1061-1078. doi:10.1002/int.21676.
  • [7] Gao H, Lu M, Wei GW, Wei Y. Some Novel Pythagorean Fuzzy Interaction Aggregation Operators in Multiple Attribute Decision Making. Fundamenta Informaticae, 2018. 159(4):385-428. doi:10.3233/FI-2018-1669.
  • [8] Yager RR. Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 2014. 22(4):958-965. doi:10.1109/TFUZZ.2013.2278989.
  • [9] Peng XD, Yang Y. Some Results for Pythagorean Fuzzy Sets. International Journal of Intelligent Systems, 2015. 30(11):1133-1160. doi:10.1002/int.21738.
  • [10] Zhang XL. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Information Sciences, 2016. 330(2):104-124. doi:10.1016/j.ins.2015.10.012.
  • [11] Peng XD, Dai JG. Approaches to Pythagorean fuzzy stochastic multi-criteria decision making based on prospect theory and regret theory with new distance measure and score function. International Journal of Intelligent Systems, 2017. 32(11): 1187-1214. doi:10.1002/int.21896.
  • [12] Ren PJ, Xu ZS, Gou XJ. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Applied Soft Computing, 2016. 42:246-259. doi:10.1016/j.asoc.2015.12.020.
  • [13] Peng XD, Yang Y. Pythagorean Fuzzy Choquet Integral Based MABAC Method for Multiple Attribute Group Decision Making. International Journal of Intelligent Systems, 2016. 31(10):989-1020. doi:10.1002/int.21814.
  • [14] Garg H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. Journal of Intelligent & Fuzzy Systems, 2016. 31(1):529-540. doi:10.3233/IFS-162165.
  • [15] Garg H. Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment. International Journal of Intelligent Systems, 2018. 33(4):687-712. doi:10.1002/int.21949.
  • [16] Chen TY. An effective correlation-based compromise approach for multiple criteria decision analysis with Pythagorean fuzzy information. Journal of Intelligent & Fuzzy Systems, 2018. 35(3): 3529-3541. doi:10.3233/JIFS-18021.
  • [17] Garg H. A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. International Journal of Intelligent Systems, 2016. 31(9):886-920. doi:10.1002/int.21809.
  • [18] Garg H. Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process. International Journal of Intelligent Systems, 2017. 32(6):597-630. doi:10.1002/int.21860.
  • [19] Zeng SZ, Chen JP, LI XS. A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making. International Journal of Information Technology & Decision Making, 2016. 15(2):403-422. doi:10.1142/S0219622016500012.
  • [20] Liang W, Zhang XL, Liu MF. The Maximizing Deviation Method Based on Interval-Valued Pythagorean Fuzzy Weighted Aggregating Operator for Multiple Criteria Group Decision Analysis. Discrete Dynamics in Nature and Society, 2015. 2015:.1-15 doi:10.1155/2015/746572.
  • [21] Ma ZM, Xu ZS. Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging Operators and Their Application in Multicriteria Decision-Making Problems. International Journal of Intelligent Systems, 2016. 31(12):1198-1219. doi:10.1002/int.21823.
  • [22] Zeng S. Pythagorean fuzzy multiattribute group decision making with probabilistic information and OWA approach. International Journal of Intelligent Systems, 2017. 32(11):1136-1150. doi:10.1002/int.21886.
  • [23] Peng XD, Yang Y. Fundamental Properties of Interval-Valued Pythagorean Fuzzy Aggregation Operators. International Journal of Intelligent Systems, 2016. 31 (5):444-487. doi:10.1002/int.21790.
  • [24] Wei GW, Lu M. Pythagorean fuzzy Maclaurin Symmetric mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 2018. 33(5):1043-1070. doi:10.1002/int.21911.
  • [25] Zhang RT, Wang J, Zhu XM, Xia MM, Yu M. Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making. Complexity, 2017. 2017:1-16. doi:10.1155/2017/5937376.
  • [26] Liu WF, Du YX, Chang J. Pythagorean fuzzy interaction aggregation operators and applications in decision making. Control and Decision, 2017. 32(6):1033-1040. doi:10.13195/j.kzyjc.2016.0431.
  • [27] Liang DC, Xu ZS, Darko AP. Projection Model for Fusing the Information of Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean. International Journal of Intelligent Systems, 2017. 32(9):966-987. doi:10.1002/int.21879.
  • [28] Garg H. Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process. Computational and Mathematical Organization Theory, 2017. 23(4):546-571. doi:10.1007/s10588-017-9242-8.
  • [29] Peng XD, Yuan HY. Fundamental properties of Pythagorean fuzzy aggregation operators. Fundamenta Informaticae, 2016. 147(4):415-446. doi:10.3233/FI-2016-1415.
  • [30] Garg H. A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its Applications to Decision-Making Processes. International Journal of Intelligent Systems, 2016. 31(12):1234-1252. doi:10.1002/int.21827.
  • [31] Peng XD, Yuan HY, Yang Y. Pythagorean Fuzzy Information Measures and their Applications. International Journal of Intelligent Systems, 2017. 32(10):991-1029. doi:10.1002/int.21880.
  • [32] Zhang XL. A Novel Approach Based on Similarity Measure for Pythagorean Fuzzy Multiple Criteria Group Decision Making. International Journal of Intelligent Systems, 2016. 31(6):593-611. doi:10.1002/int.21796.
  • [33] Peng XD, Yang Y, Song JP, Jiang Y. Pythagorean Fuzzy Soft Set and Its Application. Computer Engineering, 2015. 41(7):224-229. doi:10.3969/j.issn.1000-3428.2015.07.043.
  • [34] Peng XD, Yang Y. Multiple attribute group decision making methods based on Pythagorean fuzzy linguistic set. Computer Engineering and Applications, 2016. 52(23):50-54. doi:10.3778/j.issn.1002-8331.1501-0022.
  • [35] Liu Z, Liu P, Liu W, Pang J. Pythagorean uncertain linguistic partitioned bonferroni mean operators and their application in multi-attribute decision making. International Journal of Intelligent Systems, 2017. 32(3):2779-2790. doi:10.3233/JIFS-16920.
  • [36] Liang DC, Xu ZS. The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 2017. 60:167-179. doi:10.1016/j.asoc.2017.06.034.
  • [37] Hadi-Vencheh A, Mirjaberi M. Fuzzy inferior ratio method for multiple attribute decision making problems. Information Sciences, 2014. 277:263-272. doi:10.1016/j.ins.2014.02.019.
  • [38] Rao RV, Singh D. Weighted Euclidean distance based approach as a multiple attribute decision making method for plant or facility layout design selection. International Journal of Industrial Engineering Computations, 2012. 3:365-382. doi:10.5267/j.ijiec.2012.01.003.
  • [39] Jain D, Garg R, Bansal A, Saini, KK. Selection and ranking of E-learning websites using weighted distance-based approximation. Journal of Computers in Education, 2016. 3(2):193-207. doi:10.1007/s40692-016-0061-6.
  • [40] Peng X, Garg H. Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Computers & Industrial Engineering, 2018. 119:439-452. doi:10.1016/j.cie.2018.04.001.
  • [41] Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006. 35(4):417-433. doi:10.1080/03081070600574353.
  • [42] Alcantud JCR, Laruelle A. Dis&approval voting: a characterization. Social Choice and Welfare, 2014. 43(1):1-10. doi:10.1007/s00355-013-0766-7.
  • [43] Peng HG, Zhang HY, Wang JQ. Probability multi-valued neutrosophic sets and its application in multicriteria group decision-making problems. Neural Computing and Applications, 2018. 30(2):563-583. doi:10.1007/s00521-016-2702-0.
  • [44] Zhan J, Xu W. Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artificial Intelligence Review, 2018. doi:10.1007/s10462-018-9649-8.
  • [45] Alcantud JCR. Some formal relationships among soft sets, fuzzy sets, and their extensions. International Journal of Approximate Reasoning, 2016. 68:45-53. doi:10.1016/j.ijar.2015.10.004.
  • [46] Alcantud JCR, Calle R. The problem of collective identity in a fuzzy environment. Fuzzy Sets and Systems, 2017. 315:57-75. doi:10.1016/j.fss.2016.02.011.
  • [47] Peng X, Dai J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Computing and Applications, 2018. 29(10): 939-954. doi:10.1007/s00521-016-2607-y.
  • [48] Peng X, Yang Y. Algorithms for interval-valued fuzzy soft sets in stochastic multi-criteria decision making based on regret theory and prospect theory with combined weight. Applied Soft Computing, 2017. 54: 415-430. doi:10.1016/j.asoc.2016.06.036.
  • [49] Peng X, Liu C. Algorithms for neutrosophic soft decision making based on EDAS, new similarity measure and level soft set. Journal of Intelligent & Fuzzy Systems, 2017. 32(1): 955-968. doi:10.3233/JIFS-161548.
  • [50] Peng X, Dai J. A bibliometric analysis of neutrosophic set: Two decades review from 1998 to 2017. Artificial Intelligence Review, 2018. doi:10.1007/s10462-018-9652-0.
  • [51] Peng X. New Operations for Interval-valued Pythagorean Fuzzy Set. Scientia Iranica, 2018. doi:10.24200/SCI.2018.5142.1119.
  • [52] Peng X, Dai J, Garg H. Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decisionmaking method with a new score function. International Journal of Intelligent Systems, 2018. 33(11): 2255-2282. doi:10.1002/int.22028.
  • [53] Garg H. A linear programming method based on an improved score function for interval-valued pythagorean fuzzy numbers and its application to decision-making. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2018. 26(1):67-80. doi:10.1142/S0218488518500046.
  • [54] Garg H. New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making. International Journal of Intelligent Systems, 2018. 33(3):653-683. doi:10.1002/int.21966.
  • [55] Garg H. A Novel Improved Accuracy Function for Interval Valued Pythagorean Fuzzy Sets and Its Applications in the Decision-Making Process. International Journal of Intelligent Systems, 2017. 32(12):1247-1260. doi:10.1002/int.21898.
  • [56] Garg H. A new improved score function of an interval-valued Pythagorean fuzzy set based TOPSIS method. International Journal for Uncertainty Quantification, 2017. 7(5):463-474. doi:10.1615/Int.J.UncertaintyQuantification.2017020197.
  • [57] Alcantud JCR, Torra V. Decomposition theorems and extension principles for hesitant fuzzy sets. Information Fusion, 2018 . 41:48-56. doi:10.1016/j.inffus.2017.08.005.
  • [58] Peng XD, Dai JG. Hesitant fuzzy soft decision making methods based on WASPAS, MABAC and COPRAS with combined weights. Journal of Intelligent & Fuzzy Systems, 2017. 33(2):1313-1325. doi:10.3233/JIFS-17124.
  • [59] Peng XD, Dai JG. Algorithms for interval neutrosophic multiple attribute decision making based on MABAC, similarity measure and EDAS. International Journal for Uncertainty Quantification, 2017. 7(5):395-421. doi:10.1615/Int.J.UncertaintyQuantification.2017020416.
  • [60] Peng XD, Dai JG, Yuan HY. Interval-valued Fuzzy Soft Decision Making Methods Based on MABAC, Similarity Measure and EDAS. Fundamenta Informaticae, 2017. 152(4): 373-396. doi:10.3233/FI-2017-1525.
  • [61] Peng XD, Yang Y. Interval-valued Hesitant Fuzzy Soft Sets and their Application in Decision Making. Fundamenta Informaticae, 2015. 141(1): 71-93. doi:10.3233/FI-2015-1264.
  • [62] Peng XD. Hesitant trapezoidal fuzzy aggregation operators based on Archimedean t-norm and t-conorm and their application in MADM with completely unknown weight information. International Journal for Uncertainty Quantification, 2017. 7(6):475-510. doi:10.1615/Int.J.UncertaintyQuantification.2017020585.
  • [63] Zhan J, Alcantud JCR. A novel type of soft rough covering and its application to multicriteria group decision making. Artificial Intelligence Review, 2018. doi:10.1007/s10462-018-9617-3.
  • [64] Peng H, Wang J. A Multicriteria Group Decision-Making Method Based on the Normal Cloud Model With Zadeh’s Z-numbers. IEEE Transactions on Fuzzy Systems, 2018. doi:10.1109/TFUZZ.2018.2816909.
  • [65] Huang HH, Liang Y. Hybrid L1/2+2 method for gene selection in the Cox proportional hazards model. Computer Methods and Programs in Biomedicine, 2018. 164:65-73. doi:10.1016/j.cmpb.2018.06.004.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eecf2738-a04e-4d07-b421-e4e87dadc5bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.