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XGBoost is well-known as an open-source software library that provides a regularizing
gradient boosting framework. Although it is widely used in the machine learning field, its
performance depends on the determination of hyper-parameters. This study focuses on the
optimization algorithm for hyper-parameters of XGBoost by using Stochastic Schemata
Exploiter (SSE). SSE, which is one of Evolutionary Algorithms, is successfully applied to
combinatorial optimization problems. SSE is applied for optimizing hyper-parameters of
XGBoost in this study. The original SSE algorithm is modified for hyper-parameter opti-
mization. When comparing SSE with a simple Genetic Algorithm, there are two interesting
features: quick convergence and a small number of control parameters. The proposed algo-
rithm is compared with other hyper-parameter optimization algorithms such as Gradient
Boosted Regression Trees (GBRT), Tree-structured Parzen Estimator (TPE), Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), and Random Search in order to con-
firm its validity. The numerical results show that SSE has a good convergence property,
even with fewer control parameters than other methods.
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1. Introduction

XGBoost [1] is one of the very useful and popular machine learning algo-
rithms. Generally, its performance depends on the hyper-parameters such as the
learning rate, maximum depth, minimum sum of instance weight, fraction of
sampled column in constructing each tree, and fraction of row sampling. Since
the selection of the hyper-parameters strongly relies on users’ experience and
knowledge, it is not easy to set hyper-parameters for new problems to be solved.

The selection of the appropriate hyper-parameters is considered a large-scale
combinatorial optimization problem and, therefore, many optimization methods
have been studied; Grid Search and Random Search are simple and easy to
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implement [2–4]. Bayesian optimization is very popular for tuning of deep neural
networks [5–7]. Evolutionary algorithms, including Genetic Algorithm (GA) and
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are widely used
for such a task [8–10]. These algorithms, however, have some problems in terms
of computational cost, accuracy, and large number of control parameters.

To address these issues, the Stochastic Schemata Exploiter (SSE) is applied
for the optimization of the hyper-parameters of XGBoost in this study. SSE,
which was first proposed by Aizawa [11, 12], is designed to solve combinational
optimization problem. SSE is classified as a evolutionary algorithm like GA. The
candidate solutions are defined using binary numbers. SSE extracts common
schemata from individuals with high fitness and then, generates new individu-
als from the extracted schemata, through the schemata exploiter process. After
that, the mutation operator is applied to randomly changed bits in the candidate
solutions. The parameters of SSE are only the population size (number of can-
didate solutions) and the mutation rate. Besides, the schemata exploiter process
distributes better schemata across the whole population. The characteristics of
SSE can be summarized as rapid convergence and a small number of control
parameters.

In the original SSE algorithm, individuals are defined as binary sequences,
like as in the simple GA. For the problem with the design variables defined as the
real values a real-coded SSE has been presented by Maruyama and Kita [13, 14].
For hyper-parameter optimization, the original SSE algorithm is extended so
that the variables are defined in integer, real, binary, and categorical formats.
The proposed algorithm is compared with the previous algorithms in order to
confirm its validity.

The rest of this paper is organized as follows. In Sec. 2, XGBoost and hyper-
-parameter optimization algorithms are introduced. The proposed algorithm is
explained in Sec. 3. In Sec. 4, numerical experiments are executed on OpenML
and UCI datasets. The obtained results are summarized in Sec. 5.

2. Background

2.1. XGBoost

XGboost is one of the gradient boosted trees algorithm [1].
When a dataset D = {(xi, yi)} with n samples and m features is given, a tree

ensemble model employs K additive functions as follows

ŷi = φ(xi) =

K∑
k=1

fk(xi). (1)
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XGBoost minimizes the following objective function

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (2)

where l and Ω denote the loss function and the penalty for the complexity of the
model, respectively. Ω is described as

Ω(f) = γT +
1

2
λ||ωi||2, (3)

where T is the number of trees, and ωi is the score of the i-th leaf. For the tree
structure q(x), the optimal ωi is given as

ω∗j =

∑
i∈Ij gi∑

i∈Ij hi + λ
, (4)

where first- and second-order derivatives are given, respectively as:

gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)),

hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)).
(5)

The optimal value is

L̃t(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (6)

Since many possible structures q exist, it is almost impossible to calculate
the score of the structures q. The search starts from a single leaf, and iteratively
adds branches. Let a divided instance be IL, IR; then, the loss reduction after
the split is given by

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ. (7)

At each iteration, the split is carried out for minimizing Lsplit.
The hyper-parameters of XGBoost to be tuned in this paper are as follows:
• booster to use (booster),
• learning rate of the algorithm (learning_rate),
• maximum depth of a tree (max_depth),
• minimum summation of instance weight for a child (min_child_weight),
• fraction of row sampling (subsample),
• fraction of column sampling in constructing each tree (colsample_bytree),
• learning objective (objective).
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2.2. Hyper-parameter optimization algorithms

2.2.1. Gradient Boosting Regression Trees. Gradient Boosting is one of non-
parametric statistical learning techniques, known as Gradient Boosted Deci-
sion Trees (GBDT) for classification task and Gradient Boosted Regression
Trees (GBRT) for regression task. The gradient boosting was first presented by
Breiman as an optimization algorithm for a function [15]. Regression gradient
boosting algorithms were further developed by H. Friedman [16].

2.2.2. Tree-structured Parzen Estimator. Tree-structured Parzen Estimator
(TPE) was presented in 2011 [17].

In hyper-parameter optimization problem, fitness is maximized over a graph-
-structured configuration space. The configuration space is tree-structured with
some leaf variables and node variables. The leaf variables denote the number of
units on a hidden layer and so on, and the node variables denote the number
of layers to use and so on.

The TPE algorithm is basically a Sequential Model-Based Global Optimiza-
tion (SMBO) [7, 17]. However, the modeling of p(y‖x) is different from the
Gaussian process (GP) approach.

SMBO approximates the fitness f with a surrogate function that is easier to
evaluate. It often uses the Expected Improvement (EI) criterion

EIy∗(x) :=

∞̂

−∞

max(y∗ − y, 0)pM (y‖x)dy, (8)

where x is chosen to minimize EIy∗(x) at each iteration. GP approach is often
used for evaluating p(y‖x).

The TPE calculates the density p(y‖y) by the following function

p(x‖y) =

{
l(x) (y < y∗),

g(x) (y ≥ y∗),
(9)

where l(x) and g(x) are density functions. The function l(x) is formed from the
observations {x(i)} such that the corresponding loss f(x(i)) is less than y∗ and
then, the function g(x) is formed from the remaining observations. The TPE
algorithm chooses that y∗ is the best observed loss.

2.2.3. Covariance Matrix Adaptation Evolution Strategy. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [8], which is one of evolutionary al-
gorithms, is derived from the de-randomized evolution strategy with covariance
matrix adaptation. One of the features is its reliability in adapting an arbitrarily
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oriented scaling of the search space in a small population. Therefore, CMA-ES
is useful for hyper-parameter tuning [9, 10].

2.2.4. Original Stochastic Schemata Exploiter. The Stochastic Schemata Ex-
ploiter (SSE) [11, 12] is a population-based search algorithm similar to GA. The
candidate solutions are defined as individuals in binary numbers. The subsets of
the individuals are determined according to their fitness ranking. The common
sequences, referred to as “common schemata”, are generated from the individuals
in each subset. New individuals are generated from the schemata.

Since SSE iteratively samples schemata and creates new individuals from the
schemata, the better schemata are rapidly distributed to the whole population.
The parameters of SSE are only the population size (number of candidate solu-
tions) and the mutation rate. Therefore, SSE has two advantages: a few control
parameters and fast convergence properties.

3. Proposed algorithm

3.1. Process

The process of the proposed algorithm is the same as the original SSE:
1. Initialization of individuals
2. Evaluation of fitness
3. Definition of subsets
4. Extraction of common schema
5. Generation of new individual
6. Mutation
7. Update of generation
In the original SSE, each gene of the individual takes only 0 or 1. However,

when the SSE is applied for the optimization of hyper-parameters for XGBoost,
each gene of the individual has to take integer number other than 0 and 1.
Therefore, each step of the process is improved as follows.

3.2. Initialization of individuals

As shown in Subsec. 2.1, XGBoost has the following hyper-parameters:
a booster to use (booster), a learning rate of the algorithm (learning_rate), a ma-
ximum depth of a tree (max_depth), a minimum summation of instance weight
for a child (min_child_weight), a fraction of row sampling (sub-sample), a frac-
tion of column sampling for constructing each tree (colsample_bytree) and
a learning objective (objective).
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The candidate values for each hyper-parameter are specified in advance. SSE
selects the set of appropriate values for the hyper-parameters. The genotype of
an individual is given as the list of a hyper-parameters

xj = {xj1, xj2, ..., xj8}. (10)

The genes xj1, xj2, ..., xj8 are related to the hyper-parameters such as: the booster
to use, the learning rate of algorithm, the maximum depth of a tree, the mini-
mum summation of instance weight for a child, the fraction of row sampling, the
fraction of column sampling for constructing each tree and the learning objective.

The genes are encoded by discrete/categorical values, not 0, 1. The genotype
of gene Γj (j = 1, 2, ...,M) is defined as

Γj = {γj1, γj2, ..., γjL}, (11)

where the gene length is L, and the population size is M .
The operator R(·) is defined first. R(A) denotes an element selected randomly

from the set A = {a1, a2, ..., an} as follows:

R(A) =



a1 if 0 ≤ p < 1

n
,

a2 if
1

n
≤ p < 2

n
,

...

an if
n− 1

n
≤ p < 1,

(12)

where p is a uniform random number within [0, 1). Individuals in the initial
population are defined as a vector as follows

[R(Γ1),R(Γ2), ...,R(ΓL)]. (13)

3.3. Evaluation of fitness

The individuals are given as x1, x2, ..., xM , whereM denotes the total number
of individuals. The fitness of the individual xj is evaluated by a fitness f(xj).

3.4. Definition of subsets

After fitness evaluation, the individuals are sorted in descending order of
their fitness values, and then, they are labeled by the indices c1, c2, ..., cM . For
example, the best individual with the best fitness has the index c1.
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S(6= ∅) denotes a subset that consists of arbitrary elements of c1, c2, ..., cM ,
and cL(S) denotes the individual with the largest index in an arbitrary subset S.
The mean fitness value of S is calculated as follows

fm(S) =
1

|S|
∑
x∈S

f(x), (14)

where |S| is the number of the elements in the subset S.
For L(S) < M , the following relationships hold:

fm(S) > fm

(
S
⋃
c(L(S)+1)

)
, (15)

fm(S) > fm

(
(S − cL(S))

⋃
c(L(S)+1)

)
, (16)

where S−cL(S) denotes the set in which the element cL(S) is eliminated from the
set S and, the notation

⋃
denotes the union of two sets. Equations (15) and (16)

are named as the partial order relationship [11, 12].
In Eqs. (15) and (16), c(L(S)) and c(L(S)+1) denote the worst individual in the

subset S and the individual worse than it in the ranking, respectively. Therefore,
Eqs. (15) and (16) indicate that the mean fitness value of the subset decreases
by adding the worse individual to the subset and replacing the worst individual
in the subset with the individual worse than it in the ranking, respectively.

According to Eqs. (15) and (16), the list consisting of the M best subsets is
defined as follows.

The first subset S1 consists of the best individual c1 alone
S1 = {c1}. (17)

The second and the third subsets are generated according to Eqs. (15) and (16),
respectively, as follows:

S2 = S1

⋃
c(L(S1)+1) = {c1}

⋃
{c2}

= {c1, c2}, (18)

S3 = (S1 − cL(S1))
⋃
c(L(S1)+1) = {∅}

⋃
{c2}

= {c2}, (19)

where {φ} denotes the empty set. The fourth and fifth subsets are generated
according to Eqs. (15) and (16), respectively, as follows:

S4 = S2

⋃
c(L(S2)+1) = {c1, c2}

⋃
{c3}

= {c1, c2, c3}, (20)

S5 = (S2 − cL(S2))
⋃
c(L(S1)+1) = {c1}

⋃
{c3}

= {c1, c3}. (21)
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Starting from c1 as the root in the case of M = 4, the generated subsets are
shown in Fig. 1.

Fig. 1. Generation of subsets with c1 as the root for M = 4.

3.5. Extraction of common schema

Since, in the original SSE, each individual is defined as only 0 and 1, a com-
mon schema, which is extracted from the individuals in the subset, can be rep-
resented as a string with the symbols 0, 1 and ∗. The symbol ∗ is called the wild
card and assumes either 0 or 1.

When SSE is extended to the hyper-parameter optimization, each gene can
take more candidates than 0 and 1. So, the symbol 〈〉 is used instead of ∗, and 〈〉
represents a set such as {a, b, c}. 〈a, b, c〉 means that the gene can assume a,
b or c.

The extraction of the common schema

H = (H1, H2, ...,HN ) (22)

from the subset

{x1,x2, ...,xP } (23)

is defined as

Hj = 〈x1j , x2j , ..., xPj〉, (24)

where 1 ≤ j ≤ N and N is the gene length.
For example, when the subset is composed of three individuals:

x1 = (1, 4, 8), x2 = (2, 4, 7), x3 = (1, 4, 9), (25)

the following common schema is extracted from the above three individuals,

(〈1, 2〉, 4, 〈7, 8, 9〉). (26)
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3.6. Generation of new individual

The operator R is applied to the extracted common schema to generate new
individuals.

For example, using the operator R for the common schema (26) leads to

(R(〈1, 2〉),R(〈4〉),R(〈7, 8, 9〉)).

Since R(〈4〉) is fixed to 4, the above equation leads to

(R(〈1, 2〉), 4,R(〈7, 8, 9〉)).

For generating a new individual, R(〈1, 2〉) randomly selects 1 or 2, and
R(〈7, 8, 9〉) randomly selects 7, 8 or 9.

Schema extraction and new individual generation in SSE are illustrated in
Fig. 2.

��������	��
������������

�����������������

Fig. 2. Schema extraction and new individual generation in SSE.

3.7. Mutation

A mutation changes the value of the gene randomly in GA and the original
SSE.

When SSE is extended to the hyper-parameter optimization, genes are en-
coded by discrete/categorical values. A mutation is expressed by replacing x′j
with the randomly-selected element from the corresponding candidates Γj , which
is given by R as

x′j ← R(Γj). (27)

The effect of the mutation rate should be discussed. For a high mutation
rate, there is a high tendency of destroying good individuals. For a low muta-
tion rate, the diversity of the individuals may be lost quickly.
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In the proposed algorithm, a rank-based mutation and a normal mutation are
compared. The mutation is applied to the individuals except for the individual
generated from the subset S1 because the individual is the best one at the current
population.

Normal mutation: Normal mutation is the mutation with a fixed mutation
rate. The mutation rate Pm is fixed during the simulation.

Rank-based mutation: Rank-based mutation employs a mutation rate de-
pending on the rank of the subset from which the common schema is created.

For the individual created from the schema of the subset with rank i, the
mutation rate is given by

p(i) =
i− 1

M
· Pmmax, (28)

where M and Pmmax denote the population size and the max mutation rate, re-
spectively.

The higher the rank of the common schema, the lower the mutation rate.
The aim of the rank-base mutation is to maintain diversity in the population.

3.8. Update of generation

The process of the algorithm is summarized in Algorithm 1.

Algorithm 1. Process of algorithm.
1: Specify the population size and gene definition
2: Randomly generate individuals to define the initial population
3: repeat
4: Estimate individual fitness
5: Define subsets
6: Extract common schemata
7: Generate a new individual from the extracted schemata
8: Perform the mutation on an individual, except for the best individual
9: Define a new population
10: until the number of generation reaches to the value given in advance

The population size and the gene definition are given at the initial step. After
the estimation of the individual fitness, the subset are generated and the com-
mon schemata are extracted from them. New individuals are generated from the
extracted schemata and applied to the mutation. A new population is updated
with these new individuals.
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4. Numerical experiment

4.1. Tasks

Binary classification tasks and regression tasks are executed. Each dataset is
randomly separated into 80% for training data (Dtrain) and 20% for test data
(Dtest). In classification tasks, we maximize the accuracy on test data after
training

λ∗ ∈ arg max
λ∈Λ

ACC(Aλ,Dtrain,Dtest), (29)

where ACC(Aλ,Dtrain,Dtest) is the accuracy on Dtest after training on Dtrain,
using λ. The constraint of λ (search range) is described later. The number of
gradient boosted trees is 100.

In regression tasks, we maximize the R2 score
λ∗ ∈ arg max

λ∈Λ
R2(Aλ,Dtrain,Dtest), (30)

where R2(Aλ,Dtrain,Dtest) is the R2 on Dtest after training on Dtrain, using λ.
The proposed algorithm based on SSE is called SSEopt. The following algo-

rithms are compared in this study:
• Stochastic Schemata Exploiter-based optimization (SSEopt),
• Gradient Boosted Regression Trees (GBRT),
• Tree-structured Parzen Estimator (TPE),
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
• Random Search.

Table 1 shows the hyper-parameters of algorithms. We compare each of the algo-
rithms under the best hyper-parameter. The scikit-optimize GBRT library [18],
Optuna TPE library, and Optuna CMA-ES library are used [19]. The mutation
methods of SSEopt are normal mutation (SSEopt_nor) and rank-based muta-
tion (SSEopt_rnk).

Table 1. Hyper-parameters of algorithms.

Algorithm Params Range
SSEopt_nor Pm 0.05, 0.10, 0.15
SSEopt_rnk Pmmax 0.05, 0.10, 0.15, 0.20

GBRT initial points 5, 10, 20
TPE γ 0.01, 0.02, 0.05, 0.10, 0.15

4.2. Dataset

The datasets for the numerical experiments are described in Table 2.
OpenML Mozilla4 (#1046) [20–22] is a binary classification task for recurrent

event modeling on software.
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Table 2. Dataset.

Dataset Features Instances Task
OpenML Mozilla4 5+1 15 545 Classification

OpenML EEG Eye State 14+1 14 980 Classification
UCI Abalone 10+1 4177 Regression

UCI Wine Quality 11+1 6497 Regression

OpenML EEG Eye State (#1471) [20, 22] is a task of a binary classification
to predict the eye-closed or eye-open state from EEG measurement. The features
are 14 EEG measurements from the Emotiv EEG Neuroheadset.

UCI Abalone dataset [23] is a regression task to predict the age of abalone
from physical measurements. The features are length, height, shell weight and
so on.

UCI Wine Quality dataset [24] is a regression task to predict wine quality.
The features are acidity, sugar, pH and so on.

4.3. Search range

Tables 3 and 4 show the search ranges. The search range A (Table 3) includes
only discrete parameters, while categorical parameters are added in the search
range B (Table 4).

Table 3. Search range A (discrete only).

Parameter Range Type
learning_rate [0.02, 0.04, ..., 0.30] discrete
max_depth [1, 2, ..., 20] discrete

min_child_weight [1, 2, ..., 20] discrete
subsample [0.30, 0.35, ..., 1.00] discrete

colsample_bytree [0.30, 0.35, ..., 1.00] discrete

Table 4. Search range B (discrete and categorical).

Parameter Range Type
booster [’gbtree’, ’gblinear’, ’dart’] categorical

learning_rate [0.02, 0.04, ..., 0.30] discrete
max_depth [1, 2, ..., 20] discrete

min_child_weight [1, 2, ..., 20] discrete
subsample [0.30, 0.35, ..., 1.00] discrete

colsample_bytree [0.30, 0.35, ..., 1.00] discrete
learning objective [’squared loss’, ’squared log loss’] categorical
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4.4. Result

4.4.1. Binary classification tasks. The results of classification tasks are shown
in Fig. 3. The horizontal and vertical axes represent trials and the mean best R2
at each trial, respectively. Figures 3a (discrete) and 3b (discrete and categorical)
are the results of the OpenML Mozilla4 dataset. Figures 3c (discrete) and 3d
(discrete and categorical) are the results of the OpenML EEG Eye State dataset.
In all figures, SSEopt, GBRT and TPE are better than Random Search and
CMA-ES. Figures 3a and 3c show that TPE and GBRT can find better solutions
than SSEopt. Figures 3b and 3d show that SSEopt can find better solutions than
TPE and GBRT. Therefore, it can be summarized that SSEopt is more effective
for the optimization of hyper-parameters including not only discrete parameters
alone but also both discrete and categorical parameters.

a) OpenML Mozilla4 Dataset, search range A b) OpenML Mozilla4 Dataset, search range B
(discrete only) (discrete and categorical)

c) OpenML EEG Eye State Dataset, search range A d) OpenML EEG Eye State Dataset, search range B
(discrete only) (discrete and categorical)

Fig. 3. Mean best R2 at each trial (classification tasks).

Table 5 shows the mean values of the optimal parameters. Refer to Subsec. 4.3
for the search range.
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Table 6 shows a comparison of computation time. The computation times of
SSEopt, GBRT, and TPE are longer than CMA-ES and Random Search.

Table 6. Mean computation time of classification tasks.

Experiment SSEopt_nor
(sec)

SSEopt_rnk GBRT TPE CMA-ES Random

a) Mozilla4, range A 137.2 132.1 150.0 137.0 95.9 80.7
b) Mozilla4, range B 440.3 384.9 408.7 422.1 184.0 179.0
c) EEG Eye State, range A 199.4 202.9 203.6 205.7 138.0 121.2
d) EEG Eye State, range B 434.7 503.9 451.6 526.8 269.3 249.4

4.4.2. Regression tasks. The results of regression tasks are shown in Fig. 4.
The horizontal and the vertical axes represent trials and the mean best accuracy
at each trial, respectively. Figures 4a (discrete) and 4b (discrete and categorical)

a) UCI Abalone Dataset, search range A b) UCI Abalone Dataset, search range B
(discrete only) (discrete and categorical)

c) UCI Wine Quality Dataset, search range A d) UCI Wine Quality Dataset, search range B
(discrete only) (discrete and categorical)

Fig. 4. Mean best accuracy at each trial (regression tasks).
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present the results of the UCI Abalone dataset. Figures 4c (discrete) and 4d
(discrete and categorical) depict the results of the UCI Wine Quality dataset.
In all figures, SSEopt, GBRT and TPE are better than Random Search and
CMA-ES. In the search range A (discrete only), as shown in Figs. 4a and 4c,
SSEopt and TPE perform as good as GBRT and TPE. On the other hand, in
search range B (discrete and categorical), as shown in Figs. 4b and 4d, SSEopt
is as good as TPE and they are both better than GBRT.

Table 7 shows the mean values of the optimal parameters. Refer to Subsec. 4.3
for the search range.

Table 8 shows a comparison of computation time. In search range A (discrete
only), the computation time of SSEopt is as short as TPE. On the other hand,
in search range B (discrete and categorical), the computation time of SSEopt is
shorter than TPE but longer than GBRT.

Table 8. Mean computation time of regression tasks.

Experiment SSEopt_nor
(sec)

SSEopt_rnk GBRT TPE CMA-ES Random

a) Abalone, range A 33.5 35.4 71.5 34.3 48.7 49.9
b) Abalone, range B 41.0 40.5 77.8 58.0 45.3 41.9
c) Wine, range A 167.3 167.3 173.7 146.0 77.3 74.7
d) Wine, range B 228.3 183.6 131.7 250.5 67.0 65.5

4.5. Discussion

As shown in Figs. 3 and 4, the final R2 scores of SSEopt, TPE, and GBRT
are almost the same in some experiments, but SSEopt and TPE are better than
GBRT in the regression tasks (discrete and categorical). CMA-ES and Random
Search exhibit worse performance than other algorithms. These results show that
the type of parameters (discrete, categorical, continuous) can strongly affect the
results. CMA-ES for real-valued spaces is recommended in [7].

Figures 3d and 4c show that SSEopt with rank-based mutation is slightly
better than normal mutation. Since the rank-base mutation tends to keep the
diversity of individuals in the population, it can prevent good solutions from
being destroyed. This mutation will work effectively in a complex space.

Tables 6 and 8 compare the computation time of SSEopt, GBRT, and TPE is
longer than CMA-ES and Random Search. The results of the classification tasks
are shown in Table 6. Figure 5 shows that SSEopt, GBRT, and TPE are better
than CMA-ES and Random Search, so the good parameters, which are searched
by SSEopt, GBRT, and TPE intensively, require a long computation time. The
computation time on the Wine dataset (regression tasks) is also similar to this
situation. The computation time mainly consists of computing the objective
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function values and estimating optimal parameters for the next iteration. Each
XGBoost task takes a long time, so the former time is usually longer than the
latter time.

5. Conclusions

The optimization algorithm of the hyper-parameters XGBoost was presented
in this study. The proposed algorithm is the extension of SSE to hyper-parameter
optimization in XGBoost. The proposed algorithm was compared with the tra-
ditional algorithms such as GBRT, TPE, CMA-ES, and Random Search in both
binary classification and regression tasks. Mozilla4 and EEG Eye datasets were
used for binary classification task UCI Abalone and UCI Wine Quality datasets
were employed for regression task. The sets of hyper-parameters to be optimized
included discrete parameters only (range A) and discrete and categorical param-
eters (range B).

First, finally obtained solutions were discussed. In all examples, SSEopt,
GBRT and TPE are better than Random Search and CMA-ES. In the binary
classification task, TPE and GBRT found better solutions than SSEopt when
the hyper-parameters were discrete alone. SSEopt can find better solutions than
TPE and GBRT when the hyper-parameters are discrete and categorical. In the
regression task, SSEopt and TPE are as good as GBRT and TPE when the hyper-
-parameters were discrete alone. SSEopt is as good as TPE and they are better
than GBRT when the hyper-parameters are discrete and categorical.

Secondly, the algorithms were compared from the view-point of computa-
tional time. The computation time of SSEopt, GBRT, and TPE was longer than
CMA-ES and Random Search in all examples. In the binary classification task,
the computational task of SSEopt was as long as GBRT and TPE and longer
than CMA-ES and Random Search. The computation time on the Wine dataset
(regression tasks) was also similar to this situation. Computation time mainly
consisted of computing the objective function values and estimating optimal
parameters for the next iteration.

The simulation results showed that the convergence property of the pro-
posed algorithm was better than the random search and CMA-ES and then,
almost equal to or better than GBRT and TPE. Moreover, the proposed algo-
rithm needs only three control parameters: population size, generation size, and
mutation rate.
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