PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical and experimental analysis of thermal and flow operating conditions of waterwall tubes connected by fins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method for determining the temperature distribution in the cross-section of waterwall tubes connected by fins using an in-house numerical algorithm prepared in the MATLAB environment, based on differential equations with separable variables. In order to verify the correctness of the algorithm operation, the temperature values obtained from it, determined for the frontal area of the tubes, are compared with the temperatures found in the Ansys Fluent environment and those measured on the test stand. A system corresponding to a fragment of the combustion chamber wall of a supercritical steam boiler was selected to perform the analysis. The system consists of three tubes connected by fins. The temperature distributions in the cross-sections of the tubes were compared for the case when each of the tubes was heated on one side with the same heat flux and when the heat flux falling on the central tube was by 50% higher than the heat flux incident on the neighbouring tubes. Experimental verification was carried out on a stand equipped with three vertical tubes connected by fins, heated on one side by infrared radiators.
Słowa kluczowe
Rocznik
Strony
81--102
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] Jackson J.D.: Fluid flow and convective heat transfer to fluids at supercritical pressure. Nucl. Eng. Des. 264(2013), 24–40.
  • [2] Taler D.: A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int. J. Therm. Sci. 108(2016), 108–122.
  • [3] Grądziel S., Majewski K., Majdak M., Mika Ł., Sztekler K., Kobyłecki R., Zarzycki R., Pilawska M.: Testing of heat transfer coefficients and frictional losses in internally ribbed tubes and verification of results through CFD modelling. Energies15(2022), 207.
  • [4] Granda M., Trojan M., Taler D.: CFD analysis of steam superheater operation in steady and transient state. Energy 199(2020), 117423.
  • [5] Węglowski B.: Identification of Thermal Operating Conditions of Boiler Furnace Tube. Zeszyty Naukowe Politechniki Krakowskiej 2(1995). Wydaw. PK, Kraków 1995 (in Polish).
  • [6] Grądziel S.: Determination of temperature and thermal stresses distribution in power boiler elements with use inverse heat conduction method. Arch. Thermodyn. 32(2011), 3, 191–200.
  • [7] Huang C.N., Kharangate C.R.: A new mechanistic model for predicting flow boiling critical heat flux based on hydrodynamic instabilities. Int. J. Heat Mass Tran. 138(2019), 1295–1309.
  • [8] Zima W., Taler J., Grądziel S., Trojan M., Cebula A., Ocłoń P., Dzierwa P., Taler D., Rerak M., Majdak M., Korzeń A., Skrzyniowska D.: Thermal calculations of a natural circulation power boiler operating under a wide range of loads. Energy 261(2022),125357.
  • [9] Taler J., Trojan M., Dzierwa P., Kaczmarski K., Węglowski B., Taler D., Zima W., Grądziel S., Ocłoń P., Sobota T., Rerak M., Jaremkiewicz M.: The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions. Energy 263(2023), 125745.
  • [10] Khan M.: Performance of a combined cycle power plant due to auxiliary heating from the combustion chamber of the gas turbine topping cycle. Arch. Thermodyn. 42(2021), 1, 147–162.
  • [11] Zima W., Grądziel S., Cebula A.: Modelling of heat and flow phenomena occuring in waterwall tubes of boilers for supercritical steam parameters. Arch. Thermodyn. 31(2010), 3, 19–36.
  • [12] Qu M., Yang D., Liang Z., Wan L., Liu D.: Experimental and numerical investigation on heat transfer of ultra-supercritical water in vertical upward tube under uniform and non-uniform heating. Int. J. Heat Mass Tran. 127(2018), 769–783.
  • [13] Kong X., Li H., Zhang Q., Guo K., Luo Q. Lei X.: A new criterion for the onset of heat transfer deterioration to supercritical water in vertically-upward smooth tubes. Appl. Therm. Eng. 151(2019), 66–76.
  • [14] Wang S., Yang D., Zhao Y., Qu M.: Heat transfer characteristics of spiral water wall tube in a 1000 MW ultra-supercritical boiler with wide operating load mode. Appl. Therm. Eng. 130(2018), 501–514.
  • [15] Kobyłecki R., Zarzycki R., Bis Z., Panowski M., Wiłski M.: Numerical analysis of the combustion of straw and wood in a stoker boiler with vibrating grate. Energy 222(2021), 119948.
  • [16] Panowski M., Zarzycki R., Kobyłecki R.: Conversion of steam power plant into cogeneration unit – case study. Energy 231(2021), 120872.
  • [17] Sultanov M.M, Griga S.A., Ivanitckii M.S., Konstantinov A.A.: Monte-Carlo method for assessing and predicting the reliability of thermal power plant equipment. Arch. Thermodyn. 42(2021), 4, 87–102.
  • [18] MATLAB R2019b Update 5 (9.7.0 1319299). The MathWorks Inc. 2020.
  • [19] Ansys Workbench 2019 R3 19. 5.0. 2019072818. ANSYS Inc. 2019.
  • [20] Majdak M., Grądziel S.: Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes. Energy 209(2020), 118416.
  • [21] Zima W., Grądziel S.: Simulation of transient processes in heating surfaces of power boilers: Mathematical modelling and experimental verification. LAP Lambert Academic Publishing 2013.
  • [22] Grądziel S., Majewski K.: Simulation of heat transfer in combustion chamber waterwall tubes of supercritical steam boilers. Chem. Process Eng. 3(2016), 2, 199–213.
  • [23] Grądziel S.: Selected Issues of Power Boiler Operation. Wydaw. PK, Kraków 2023 (in Polish)
  • [24] Zima W., Nowak-Ocłoń M.: A new 1D/2D model of the conjugate heat transfer in waterwall tubes of the supercritical steam boiler combustion chamber. Heat Transf. Eng. 39(2018), 13–14, 1272–1282.
  • [25] Majdak M., Grądziel S.: Analysis of thermal flow in waterwall tubes of the combustion chamber depending on the fluid parameters. Therm. Sci. 23(2019), 1333–1344.
  • [26] Majdak M.: Thermal flow and strength analysis of combustion chamber waterwall tubes operation. PhD thesis, Cracow University of Technology, Kraków 2021 (in Polish).
  • [27] Wilo SE: Wilo Stratos GIGA 40/1-45/3,8. https://wilo.com/id/en/Productsand-expertise/en/products-expertise/wilo-stratos-giga/stratos-giga-40-1-45-3-8 (accessed 20 Oct. 2023).
  • [28] GOTRONIK PPHU: Power regulator parameters (BTE-435). https://www.gotronik.pl/modul-regulatora-mocy-10000w-p-4278.html (accessed 20 Oct. 2023).
  • [29] ENKO-POMIAR Sp. z o.o.: Electromagnetic flow meters. https://www.enko-pomiar.pl/52,81,0 (accessed 20 Oct. 2023).
  • [30] ALF-SENSOR Sp. J.: Thermocouples. https://alf-sensor.com/catalogue-of-our-products/thermocouples.html (accessed 20 Oct. 2023).
  • [31] Ahlborn ALMEMO MA 5690-2 Manual. https://www.ahlborn.com/download/anleitung/eng/56902e.pdf (accessed 20 Oct. 2023).
  • [32] AMR Win Control software. https://www.ahlborn.com/download/pdfs/kap05/eng/WinControle.pdf (accessed 20 Oct. 2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eecc8dd7-0b2a-4217-829d-a363a97f54c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.