PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Sensitivity enhancement of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin concentration using barium titanate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the performances of a wavelength interrogation-based optical fiber surface plasmon resonance sensor for hemoglobin (Hb) concentration is investigated by theoretical simulation. The proposed configuration incorporates optical fiber, 70 nm silver, 18 nm barium titanate (BaTiO3), and 2 nm zinc oxide. Simulation results show the sensor exhibits refractive index sensitivity of 4023 nm/RIU and concentration sensitivity of 10.0873 nm/(g∙dL), along with Hb concentration varying from 0 to 14 g/dL. This paper especially focuses on the influence of BaTiO3 on the performances of the proposed sensor with light wavelength ranging from 350 to 1000 nm. Comparison analysis indicates sandwiching 18 nm BaTiO3 between sensing layers not only enhances the concentration sensitivity by 30.14% but also decreases the nonlinear error of the sensor from 0.68% to 0.63%. For a wavelength accuracy of 0.1 nm, the proposed sensor can provide a resolution of 0.0099 g/dL for Hb concentration detection.
Czasopismo
Rocznik
Strony
167--184
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, China, 066000
  • Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China, 066000
  • Department of Engineering Technology, Open University of Guangdong (Guangdong Polytechnic Institute), Guangzhou, China, 510091
  • Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, China, 066000
  • Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China, 066000
autor
  • School of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China, 066000
autor
  • Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, China, 066000
  • Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China, 066000
autor
  • Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, China, 066000
  • Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China, 066000
  • Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, China, 066000
  • Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, China, 06600
Bibliografia
  • [1] MORENO Y., SONG Q., XING Z., SUN Y., YAN Z., Hybrid tilted fiber gratings-based surface plasmon resonance sensor and its application for hemoglobin detection, Chinese Optics Letters 18(10), 2020: 100601.
  • [2] FRIEBEL M., MEINKE M., Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration, Applied Optics 45(12), 2006: 2838-2842. https://doi.org/10.1364/AO.45.002838
  • [3] ZHERNOVAYA O., SYDORUK O., TUCHIN V., DOUPLIK A., The refractive index of human hemoglobin in the visible range, Physics in Medicine and Biology 56(13), 2011: 4013-4021. https://doi.org/10.1088/0031-9155/56/13/017
  • [4] BARER R., Refractometry and interferometry of living cells, Journal of the Optical Society of America 47(6), 1957: 545-556. https://doi.org/10.1364/JOSA.47.000545
  • [5] SHARMA A.K., JHA R., PATTANAIK H.S., Design considerations for surface plasmon resonance based detection of human blood group in near infrared, Journal of Applied Physics 107(3), 2010: 034701. https://doi.org/10.1063/1.3298503
  • [6] NGUYEN T.T., BEA S.O., KIN D.M., YOON W.J., PARK J.-W., AN S.S.A., JU H., A regenerative label-free fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen, International Journal of Nanomedicine 10, 2015: 155-163. https://doi.org/10.2147/ijn.s88963
  • [7] LIEDBERG B., NYLANDER C., LUNSTRÖM I., Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators 4, 1983: 299-304. https://doi.org/10.1016/0250-6874(83)85036-7
  • [8] BRAHMACHARI K., RAY M., Modelling and performance analysis of a plasmonic biosensor comprising of silicon and chalcogenide materials for detecting refractive index variations of hemoglobin in near infrared, Optik 127(7), 2016: 3517-3522. https://doi.org/10.1016/j.ijleo.2015.12.148
  • [9] HEIDARZADEH H., Analysis and simulation of a plasmonic biosensor for hemoglobin concentration detection using noble metal nano-particles resonances, Optics Communications 459, 2019: 124940. https://doi.org/10.1016/j.optcom.2019.124940
  • [10] MOHANTY G., SAHOO B.K., Effect of III-V nitrides on performance of graphene based SPR biosensor for detection of hemoglobin in human blood sample: A comparative analysis, Current Applied Physics 16(12), 2016, 1607-1613. https://doi.org/10.1016/j.cap.2016.09.006
  • [11] TENG C., LI M., CHENG Y., PENG H., DENG S., DENG H., YUAN L., CHEN M., Investigation of U-shape tapered plastic optical fibers based surface plasmon resonance sensor for RI sensing, Optik 251, 2022: 168461. https://doi.org/10.1016/j.ijleo.2021.168461
  • [12] JAIN S., PALIWAL A., GUPTA V., TOMAR M., Smartphone integrated handheld long range surface plasmon resonance based fiber-optic biosensor with tunable SiO2 sensing matrix, Biosensors and Bioelectronics 201, 2022: 113919. https://doi.org/10.1016/j.bios.2021.113919
  • [13] DENG Y., LI M., CAO W., WANG M., HAO H., XIA W., SU F., Fiber optic coupled surface plasmon resonance sensor based Ag-TiO2 films for hydrogen detection, Optical Fiber Technology 65, 2021: 102616. https://doi.org/10.1016/j.yofte.2021.102616
  • [14] SHOJI A., NAKAJIMA M., MORIOKA K., FUJIMORI E., UMEMURA T., YANAGIDA A., HEMMI A., UCHIYAMA K., NAKAJIMA H., Development of a surface plasmon resonance sensor using an optical fiber prepared by electroless displacement gold plating and its application to immunoassay, Talanta 240, 2022: 123162. https://doi.org/10.1016/j.talanta.2021.123162
  • [15] WANG Y., XU J., NING T., LIU L., ZHENG J., WANG J., PEI L., ZHANG J., YOU H., Research on fiber-optic magnetic field sensor based on surface plasmon resonance, Optik 251, 2022: 168346. https://doi.org/10.1016/j.ijleo.2021.168346
  • [16] DUBEY S.K., KUMAR A., KUMAR A., PATHAK A., SRIVASTAVA S.K., A study of highly sensitive D-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2, Optik 252, 2022: 168527. https://doi.org/10.1016/j.ijleo.2021.168527
  • [17] HOMOLA J., Optical fiber sensor based on surface plasmon excitation, Sensors and Actuators B: Chemical 29(1-3), 1995: 401-405. https://doi.org/10.1016/0925-4005(95)01714-3
  • [18] LIN W.B., JAFFREZIC-RENAULT N., GAGNAIRE A., GAGNAIRE H., The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor, Sensors and Actuators A: Physical 84(3), 2000: 198-204. https://doi.org/10.1016/S0924-4247(00)00345-9
  • [19] SHARMA A.K., GUPTA B.D., Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation, Sensors and Actuators B: Chemical 100(3), 2004: 423-431. https://doi.org/10.1016/j.snb.2004.02.013
  • [20] SHARMA A.K., Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations, Journal of Applied Physics 114(4), 2013: 044701. https://doi.org/10.1063/1.4816272
  • [21] LUO M., WANG Q., A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection, Alexandria Engineering Journal 60(4), 2021: 4115-4120. https://doi.org/10.1016/j.aej.2020.12.041
  • [22] SRIVASTAVA S.K., ARORA V., SAPRA S., GUPTA B.D., Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose, Plasmonics 7, 2012: 261-268. https://doi.org/10.1007/s11468-011-9302-8
  • [23] RANI M., SHUKLA S., SHARMA N.K., SAJAL V., Theoretical study of nanocomposites based fiber optic SPR sensor, Optics Communications 313, 2014: 303-314. https://doi.org/10.1016/j.optcom.2013.10.048
  • [24] SUN P., WANG M., LIU L., JIAO L., DU W., XIA F., LIU M., KONG W., DONG L., YUN M., Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers, Applied Surface Science 475, 2019, 342-347. https://doi.org/10.1016/j.apsusc.2018.12.283
  • [25] WANG Q., NIU L.-Y., JING J.-Y., ZHAO W.-M., Barium titanate film based fiber optic surface plasmon sensor with high sensitivity, Optics & Laser Technology 124, 2020: 105899. https://doi.org/10.1016/j.optlastec.2019.105899
  • [26] WAN Q., LI Q.H., CHEN Y.J., WANG T.H., HE X.L., LI J.P., LIN C.L., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letters 84(18), 2004: 3554-3656. https://doi.org/10.1063/1.1738932
  • [27] WANG J.X., SUN X.W., WEI A., LEI Y., CAI X.P., LI C.M., DONG Z.L., Zinc oxide nanocomb biosensor for glucose detection, Applied Physics Letters 88(23), 2006: 233106. https://doi.org/10.1063/1.2210078
  • [28] GUPTA S.K., JOSHI A., KAUR M., Development of gas sensors using ZnO nanostructures, Journal of Chemical Sciences 122, 2010: 57-62. https://doi.org/10.1007/s12039-010-0006-y
  • [29] DOSTALEK J., KASRY A., KNOLL W., Long range surface plasmons for observation of biomolecular binding events at metallic surfaces, Plasmonics 2, 2007: 97-106. https://doi.org/10.1007/s11468-007-9037-8
  • [30] SHUKLA S., SHARMA N.K., SAJAL V., Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study, Sensors and Actuators B: Chemical 206, 2015: 463-470. https://doi.org/10.1016/j.snb.2014.09.083
  • [31] NAYAK J.K., JHA R., Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing, Applied Optics 56(10), 2017: 3510-3517. https://doi.org/10.1364/AO.56.003510
  • [32] ORDAL M.A., LONG L.L., BELL R.J., BELL S.E., BELL R.R., ALEXANDER R.W., WARD C.A., Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Applied Optics 22(7), 1983: 1099-1119. https://doi.org/10.1364/AO.22.001099
  • [33] WEMPLE S.H., DIDOMENICO M., CAMLIBEL I., Dielectric and optical properties of melt-grown BaTiO3, Journal of Physics and Chemistry of Solids 29(10), 1968: 1797-1803. https://doi.org/10.1016/0022-3697(68)90164-9
  • [34] SACHET E., LOSEGO M.D., GUSKE J., FRANZEN S., MARIA J.P., Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films, Applied Physics Letters 102(5), 2013: 051111. https://doi.org/10.1063/1.4791700
  • [35] HSU L.-S., YEH C.S., KUO C.C., HUANG B.R., DHAR S., Optical and transport properties of undoped and Al-, Ga- and In-doped ZnO thin films, Journal of Optoelectronics and Advanced Materials 7(6), 2005: 3039-3046.
  • [36] JIANG L.G., SUN P., Models of the wavelength dependence for the index of refraction of water, Chinese Journal of Spectroscopy Laboratory 19(4), 2002: 554-556.
  • [37] SHARMA A.K., GUPTA B.D., On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors, Journal of Applied Physics 101(9), 2007: 093111. https://doi.org/10.1063/1.2721779
  • [38] PRAHL S., Optical Absorption of Hemoglobin, Oregon Medical Laser Center, 1999. http://omlc.ogi.edu/spectra/hemoglobin
  • [39] SETAREH M., KAATUZIAN H., Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate, Superlattices and Microstructures 153, 2021: 106867. https://doi.org/10.1016/j.spmi.2021.106867
  • [40] SINGH M.K., PAL S., VERMA A., DAS R., PRAJAPATI Y.K., A nanolayered structure for sensitive detection of hemoglobin concentration using surface plasmon resonance, Applied Physics A 127, 2021: 832. https://doi.org/10.1007/s00339-021-04985-w
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eecb13a1-8c2c-4832-a626-006ed85f14bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.