PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A micromechanical approach to numerical modeling of yielding of open-cell porous structures under compressive loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, interconnected open-cell porous structures made of titanium and its alloys are replacing the prevalent solid metals used in bone substitute implants. The advent of additive manufacturing techniques has enabled manufacturing of open-cell structures with arbitrary micro-structural geometry. In this paper, rhombic dodecahedron structures manufactured using SLM technique and tested by Amin Yavari et al. (2014) are investigated numerically using ANSYS and LS-DYNA finite element codes for the modeling of the elastic and postyielding behavior of the lattice structure, respectively. Implementing a micro-mechanical approach to the numerical modeling of the yielding behavior of open-cell porous materials is the main contribution of this work.One of the advantages of micro-mechanical modeling of an open-cell structure is that, in contrast to the macro-mechanical finite element modeling, it is not necessary to obtain several material constants for different foam material models through heavy experimental tests. The results of the study showed that considering the irregularity in defining the cross-sections of the struts decreases both the yielding stress and densification strain of the numerical structure to the values obtained from the experimental tests. Moreover, the stress-strain curve of the irregular structure was much smoother in two points of yielding and densification, which is also observable in experimental plots. Considering the irregularity in the structure also decreased the elastic modulus of the lattice structure by about 20-30%. The post-densification modulus was more influenced by irregularity as it was decreased by more than 50%. In summary, it was demonstrated that using beam elements with variable cross-sections for constructing open-cell biomaterials could result in numerical results sufficiently close to the experimental data.
Rocznik
Strony
769--781
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Amirkabir University of Technology (Tehran Polytechnic), Department of Mechanical Engineering, Hafez Ave, Tehran, Iran Delft University of Technology (TU Delft), Department of Biomechanical Engineering, Delft, The Netherlands
autor
  • Amirkabir University of Technology (Tehran Polytechnic), Department of Mechanical Engineering, Hafez Ave, Tehran
Bibliografia
  • 1. Ahmadi S., Campoli G., Amin Yavari S., Sajadi B., Wauthl´e R., Schrooten J., Weinans H., Zadpoor A.A., 2014, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, Journal of the Mechanical Behavior of Biomedical Materials, 34, 106-115
  • 2. Alkhader M., Vural M., 2008, Mechanical response of cellular solids: role of cellular topology and microstructural irregularity, International Journal of Engineering Science, 46, 10, 1035-1051 sufficiently
  • 3. Amin Yavari S., Wauthl´e R., Van der Stok J., Riemslag A., Janssen M., Mulier M., Kruth J.-P., Schrooten J., Weinans H., Zadpoor A.A., 2013, Fatigue behavior of porous biomaterials manufactured using selective laser melting, Materials Science and Engineering: C, 33, 8, 4849-4858
  • 4. Babaee S., Jahromi B.H., Ajdari A., Nayeb-Hashemi H., Vaziri A., 2012, Mechanical properties of open-cell rhombic dodecahedron cellular structures, Acta Materialia, 60, 6, 2873-2885
  • 5. Bitsche R., Daxner T., Bohm H.J., 2005, Space-Filling Polyhedra as Mechanical Models for Solidified Dry Foams, Technische Universit¨at Wien
  • 6. Borleffs M., 2012, Finite Element Modeling to Predict Bulk Mechanical Properties of 3D Printed Metal Foams, TU Delft, Delft University of Technology
  • 7. Bram M., Stiller C., Buchkremer H.P., Stover D., Baur H. ¨ , 2000, High-porosity titanium, stainless steel, and superalloy parts, Advanced Engineering Materials, 2, 4, 196-199
  • 8. Buffel B., Desplentere F., Bracke K., Verpoest I., 2014, Modelling open cell-foams based on the Weaire-Phelan unit cell with a minimal surface energy approach International Journal of Solids and Structures, 51, 19, 3461-3470
  • 9. Campoli G., Borleffs M., Amin Yavari S., Wauthle R., Weinans H., Zadpoor A.A., 2013, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Materials and Design, 49, 957-965
  • 10. Chen L.-J., Ting L., Li Y.-M., Hao H., Hu Y.-H., 2009, Porous titanium implants fabricated by metal injection molding, Transactions of Nonferrous Metals Society of China, 19, 5, 1174-1179
  • 11. Demiray S., Becker W., Hohe J., 2009, Investigation of the fatigue behavior of open cell foams by a micromechanical 3-D model, Materials Science and Engineering: A, 504, 1, 141-149
  • 12. Gibson L.J., Ashby M.F., 1997, Cellular Solids: Structure and Properties, Cambridge University Press
  • 13. Head W.C., Bauk D.J., Emerson R.H. Jr, 1995, Titanium as the material of choice for cementless femoral components in total hip arthroplasty, Clinical Orthopaedics and Related Research, 311, 85-90
  • 14. Hedayati R., Hosseini-Toudeshky H., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016a, Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials, International Journal of Fatigue, 84, 67-79
  • 15. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016b, Effect of mass multiple counting on the elastic properties of open-cell regular porous biomaterials, Materials and Design, 89, 9-20
  • 16. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016c, Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells, International Journal of Mechanical Sciences, 106, 19-38
  • 17. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016d, Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models, Materials Science and Engineering: C, 60, 163-183
  • 18. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016e, Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell, Journal of the Mechanical Behavior of Biomedical Materials, 53, 272-294
  • 19. Heinl P., Muller L., Korner C., Singer R.F., Muller F.A., 2008, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomaterialia, 4, 5, 1536-1544
  • 20. Karageorgiou V., Kaplan D., 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 27, 5474-5491
  • 21. Kraynik A.M., Reinelt D.A., 1996, Linear elastic behavior of dry soap foams, Journal of Colloid and interface Science, 181, 2, 511-520
  • 22. Kwok P.J., Oppenheimer S.M., Dunand D.C., 2008, Porous titanium by electro-chemical dissolution of steel space-holders, Advanced Engineering Materials, 10, 9, 820-825
  • 23. Lu J., Flautre B., Anselme K., Hardouin P., Gallur A., Descamps M., Thierry B., 1999, Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo, Journal of Materials Science: Materials in Medicine, 10, 2, 111-120
  • 24. Luxner M.H., Woesz A., Stampfl J., Fratzl P., Pettermann H.E., 2009, A finite element study on the effects of disorder in cellular structures, Acta Biomaterialia, 5, 1, 381-390
  • 25. Mullen L., Stamp R.C., Brooks W.K., Jones E., Sutcliffe C.J., 2009, Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications, Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 89, 2, 325-334
  • 26. Parthasarathy J., Starly B., Raman S., Christensen A., 2010, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials, 3, 3, 249-259
  • 27. Ptochos E., Labeas G., 2012a, Elastic modulus and Poisson’s ratio determination of microlattice cellular structures by analytical, numerical and homogenisation methods, Journal of Sandwich Structures and Materials, p. 1099636212444285
  • 28. Ptochos E., Labeas G., 2012b, Shear modulus determination of cuboid metallic open-lattice cellular structures by analytical, numerical and homogenisation methods, Strain, 48, 5, 415-429
  • 29. Ryan G., Pandit A., Apatsidis D.P., 2006, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 13, 2651-2670
  • 30. Shulmeister V., Van der Burg M., Van der Giessen E., Marissen R., 1988, A numerical study of large deformations of low-density elastomeric open-cell foams, Mechanics of Materials, 30, 2, 125-140
  • 31. Silva M.J., Gibson L.J., 1997, The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids, International Journal of Mechanical Sciences, 39, 5, 549-563
  • 32. Warren W., Kraynik A., 1997, Linear elastic behavior of a low-density Kelvin foam with open cells, Journal of Applied Mechanics, 64, 4, 787-794
  • 33. Zheng X., Lee H., Weisgraber T.H., Shusteff M., DeOtte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jackson J.A., 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 6190, 1373-1377
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eec6df0e-377d-4257-99d4-b5f754232e61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.