PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving modified policy iteration for probabilistic model checking

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Along with their modified versions, value iteration and policy iteration are well-known algorithms for the probabilistic model checking of Markov decision processes. One challenge with these methods is that they are time-consuming in most cases. Several techniques have been proposed to improve the performance of iterative methods for probabilistic model checking; however, the running times of these techniques depend on the graphical structure of the utilized model. In some cases, their performance can be worse than the performance of standard methods. In this paper, we propose two new heuristics for accelerating the modified policy iteration method. We first define a criterion for the usefulness of the computations of each iteration of this method. The first contribution of our work is to develop and use a criterion to reduce the number of iterations in modified policy iteration. As the second contribution, we propose a new approach for identifying useless updates in each iteration. This method reduces the running time of the computations by avoiding the useless updates of states. The proposed heuristics have been implemented in the PRISM model checker and applied on several standard case studies. We compare the running time of our heuristics with the running times of previous standard and improved methods. Our experimental results show that our techniques yields a significant speed-up.
Wydawca
Czasopismo
Rocznik
Tom
Strony
63--80
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • University of Tabriz, Department of Computer Science, Tabriz, Iran
  • University of Tabriz, Department of Computer Science, Tabriz, Iran
  • University of Tabriz, Department of Computer Science, Tabriz, Iran
Bibliografia
  • [1] Ábrahám E., Jansen N., Wimmer R., Katoen J.P., Becker B.: DTMC model hecking by SCC reduction. In: 2010 Seventh International Conference on the uantitative Evaluation of Systems, pp. 37–46, IEEE, 2010.
  • [2] Ashok P., Křetínsk`y J., Weininger M.: PAC statistical model checking for Markovdecision processes and stochastic games. In: International Conference on Computer Aided Verification, pp. 497–519, Springer, 2019.
  • [3] Baier C., Hermanns H., Katoen J.P.: The 10,000 facets of MDP model checking. n: Computing and Software Science, pp. 420–451, Springer, 2019.
  • [4] Baier C., Katoen J.P.: Principles of model checking, MIT Press, 2008.
  • [5] Baier C., Klein J., Leuschner L., Parker D., Wunderlich S.: Ensuring the eliability of your model checker: Interval iteration for Markov decision processes. n: International Conference on Computer Aided Verification, pp. 160–180, pringer, 2017.
  • [6] Brázdil T., Chatterjee K., Chmelik M., Forejt V., Křetínsk`y J., Kwiatkowska M., arker D., Ujma M.: Verification of Markov decision processes using learning algorithms. In: International Symposium on Automated Technology for Verification and Analysis, pp. 98–114, Springer, 2014.
  • [7] Dehnert C., Junges S., Katoen J.P., Volk M.: A storm is coming: A modern probabilistic model checker. In: International Conference on Computer Aided Verification, pp. 592–600, Springer, 2017.
  • [8] Feng L., Kwiatkowska M., Parker D.: Compositional verification of probabilistic systems using learning. In: 2010 Seventh International Conference on the Quantitative Evaluation of Systems, pp. 133–142, IEEE, 2010.
  • [9] Forejt V., Kwiatkowska M., Norman G., Parker D.: Automated verification techniques for probabilistic systems. In: International school on formal methods for the design of computer, communication and software systems, pp. 53–113, Springer, 2011.
  • [10] Gros T.P., Hermanns H., Hoffmann J., Klauck M., Steinmetz M.: Deep statistical model checking. In: International Conference on Formal Techniques for Distributed Objects, Components, and Systems, pp. 96–114, Springer, 2020.
  • [11] Hartmanns A.: On the Analysis of Stochastic Timed Systems, Ph.D. thesis, Saarland University, 2015.
  • [12] Katoen J.P.: The probabilistic model checking landscape. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45, 2016.
  • [13] Klein J., Baier C., Chrszon P., Daum M., Dubslaff C., Klüppelholz S., Märcker S., Müller D.: Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deterministic Büchi automata, International Journal on Software Tools for Technology Transfer, vol. 20(2), pp. 179–194, 2018.
  • [14] Kwiatkowska M., Norman G., Parker D.: Symmetry reduction for probabilistic model checking. In: International Conference on Computer Aided Verification, pp. 234–248, Springer, 2006.
  • [15] Kwiatkowska M., Norman G., Parker D.: PRISM 4.0: Verification of probabilistic real-time systems. In: International Conference on Computer Aided Verification, pp. 585–591, Springer, 2011.
  • [16] Kwiatkowska M., Parker D., Qu H.: Incremental quantitative verification for Markov decision processes. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN), pp. 359–370, IEEE, 2011.
  • [17] Mohagheghi M., Karimpour J., Isazadeh A.: Prioritizing methods to accelerate probabilistic model checking of discrete-time Markov models, The Computer Journal, vol. 63(1), pp. 105–122, 2020.
  • [18] Parker D.A.: Implementation of symbolic model checking for probabilistic systems, Ph.D. thesis, University of Birmingham, 2003.
  • [19] Puterman M.L.: Markov decision processes: discrete stochastic dynamic programming, John Wiley & Sons, 2014.
  • [20] Rataj A., Woźna-Szcześniak B.: Extrapolation of an Optimal Policy using Statistical Probabilistic Model Checking, Fundamenta Informaticae, vol. 157(4), pp. 443–461, 2018.
  • [21] Ujma M.: On verification and controller synthesis for probabilistic systems at runtime, Ph.D. thesis, Citeseer, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eebf7ebe-7fdc-4760-8751-02e493039e6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.