PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the coil winding direction on the efficiency of Wireless Power Transfer Systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ kierunku nawinięcia zwojów cewki na sprawność systemów bezprzewodowej transmisji energii
Języki publikacji
EN
Abstrakty
EN
The article presents the results of numerical and analytical analysis of the Wireless Power Transfer System (WPT). The system consists of flat, square coils. Two WPT systems were considered: periodic and aperiodic. In the aperiodic arrangement, adjacent coils had their turns wound in the opposite direction. The influence of the winding direction, the number of turns and the distance between the coils on the efficiency of the WPT system was compared. The analysis covered a wide frequency range from 100 kHz to 1000 kHz. The results obtained with both proposed methods were consistent, which confirmed the correctness of the assumptions made. In periodic and aperiodic models, higher efficiency was achieved for a higher number of turns. The proposed aperiodic models of the WPT system show a higher system efficiency than periodic models by up to 40%. The proposed WPT system can be used for simultaneous charging of many sensors located e.g. in walls.
PL
W artykule przedstawiono wyniki analizy numerycznej i analitycznej Systemu Bezprzewodowego Przesyłu Mocy (WPT). System składa się z płaskich cewek kwadratowych. Rozpatrzono dwa układy WPT: periodyczny i aperiodyczny. W układzie aperiodycznym sąsiednie cewki miały nawinięte zwoje w przeciwnym kierunku. Porównano wpływ kierunku uzwojenia, liczby zwojów oraz odległości między cewkami na sprawność układu WPT. Wyniki uzyskane obiema zaproponowanymi metodami były zgodne, co potwierdziło słuszność przyjętych założeń. Analiza została przeprowadzona w szerokim zakresie częstotliwości (100 - 1000 kHz). W modelach periodycznych i aperiodycznych wyższą sprawność uzyskano dla większej liczby zwojów. Zaproponowane aperiodyczne modele systemu WPT wykazują wyższą sprawność układu niż modele periodyczne nawet o 40%. Proponowany system WPT może służyć do jednoczesnego ładowania wielu czujników umieszczonych np. w ścianach.
Rocznik
Strony
148--153
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Barman S.D., Reza A.W., Kumar N., Karim Md. E., Munir A.B., Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications, Renewable and Sustainable Energy Reviews,51 (2015), 1525-1552
  • [2] Cheon S., Kim Y.-H., Kang S.-Y., Lee M.L., Lee J.-M.; Zyung T., Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances, IEEE Transactions on Industrial Electronics, 58 (2011), 5560805, 2906-2914
  • [3] Rim C.T., Mi C., Wireless Power Transfer for Electric Vehicles and Mobile Devices; John Wiley & Sons, Ltd.: Hoboken, United States, 2017, 473-490
  • [4] Fujimoto K., Itoh K., Antennas for Small Mobile Terminals, 2nd ed., Artech House: Norwood, USA, 2018, 30-70
  • [5] Stankiewicz J.M., Choroszucho A., Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils, Energies, 14 (2021), no. 16, 4975
  • [6] Zhang Z., Pang H., Georgiadis A., Cecati C., Wireless Power Transfer – An Overview, IEEE Trans. Ind. Electron., 66 (2019), 1044-1058
  • [7] Wei X., Wang Z., Dai H., A critical review of wireless power transfer via strongly coupled magnetic resonances, Energies, 7 (2014), 4316-434
  • [8] Li S., Mi C.C., Wireless power transfer for electric vehicle applications, IEEEJ Emerg Sel Top Power Electron, 2015, 3(1), 4–17
  • [9] Stankiewicz J.M., Choroszucho A., Efficiency of the Wireless Power Transfer System with Planar Coils in the Periodic and Aperiodic Systems, Energies, 15 (2022), no. 1, 115
  • [10] Raju S., Wu R., Chan M., Yue C.P., Modeling of Mutual Coupling Between Planar Inductors in Wireless Power Applications, IEEE Trans. Power Electron., 29 (2014), 481-490
  • [11] Sun L., Ma D., Tang H., A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging, Renewable and Sustainable Energy Reviews, 91 (2018), 490-503
  • [12] Luo Z., Wei X., Analysis of Square and Circular Planar Spiral Coils in Wireless Power Transfer System for Electric Vehicles, IEEE Trans. Ind. Electron., 65 (2018), 331-341
  • [13] Li X., Zhang H., Peng F., Li Y., Yang T., Wang B., Fang D., A wireless magnetic resonance energy transfer system for micro implantable medical sensors, Sensors, 12 (2012), 10292-10308
  • [14] Fitzpatrick D., Implantable Electronic Medical Devices; Academic Press: San Diego, United States, 2014, 7-35
  • [15] Martin P., Ho B.J., Grupen N., Muñoz S., Srivastasa M., An iBeacon Primer for Indoor Localization, In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys’14), Memphis, USA, 3-6 November 2014, 190-191
  • [16] Kim D., Abu-Siada A., Sutinjo A., State-of-the-art literature review of WPT: Current limitations and solutions on IPT, Electr. Pow. Syst. Res., 154 (2018), 493-502
  • [17] Re P.D.H., Podilchak S.K., Rotenberg S., Goussetis G., Lee J., Circularly polarized retrodirectiveantenna array for wireless power transmission, In Proceedingsof the 11th European Conference on Antennas andPropagation (EUCAP), Paris, France, 19-24 March 2017, 891–895
  • [18] Stevens C.J., Magnetoinductive waves and wireless powertransfer. IEEE Trans. Power Electron., 30 (2015), 6182–6190
  • [19] Li Y., Song K., Li Z., Jiang J., Zhu C., Optimal Efficiency Tracking Control Scheme Based on Power Stabilization for a Wireless Power Transfer System with Multiple Receivers, Energies, 11 (2019), 1232
  • [20] Sample A.P., Meyer D.A., Smith J.R., Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Trans. Ind. Electron., 58 (2011), 544–554
  • [21] Zhong W., Lee C.K., Hui S.Y.R., General analysis onthe use of Tesla’s resonators in domino forms for wirelesspower transfer, IEEE Trans. Ind. Electron., 60 (2013), 261–270
  • [22] Alberto J., Reggiani U., Sandrolini L., Albuquerque,H., Accurate calculation of the power transfer and efficiency inresonator arrays for inductive power transfer, PIER, 83 (2019),61–76
  • [23] Alberto J., Reggiani U., Sandrolini L., Albuquerque H., Fast calculation and analysis of the equivalent impedance of a wireless power transfer system using an array of magnetically coupled resonators, PIER B, 80 (2018), 101–112
  • [24] Eteng A.A., Rahim S.K.A., Leow C.Y., Chew B.W., Vandenbosch G.A.E., Two-stage design method for enhanced inductive energy transmission with Q-constrained planar square loops, PLoS ONE, 11 (2016), e0148808
  • [25] Stankiewicz J.M., Choroszucho A., Steckiewicz A., Estimation of the Maximum Efficiency and the Load Power in the Periodic WPT Systems Using Numerical and Circuit Models, Energies, 14 (2021), no. 4, 1151
  • [26] ICNIRP. Gaps in Knowledge Relevant to the Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz–100 kHz) 2010, Health Phys., 118 (2020), 533–542
  • [27] ETSI TR 103 493 V1.1.1 (2019-02). System Reference Document (SRdoc), Wireless Power Transmission (WPT) Systems Operating below 30 MHz. Available online: https://www.etsi.org/deliver/etsi_tr/103400_103499/103493/01.01.01_60/tr_103493v010101p.pdf (accessed on 5 December 2021)
  • [28] Choroszucho A., Butryło B., Local attenuation of electromagnetic field generated by wireless communication system inside the building, Przegląd Elektrotechniczny, 87(7), (2011), 123-127
  • [29] Choroszucho A., Butryło B., Inhomogeneities and dumping of high frequency electromagnetic field in the space close to porous wall, Przegląd Elektrotechniczny, 88(5a), (2012), 263-266
  • [30] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The finite element method: it's basis & fundamentals, 7th edition, Butterworth-Heinemann, 2013
  • [31] Taflove A., Hagness S.C., Computational Electrodynamics: The finite – difference time – domain method. Boston, Artech House, 2005
  • [32] Nikoletseas S., Yang Y., Georgiadis A., Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks; Springer, Cham, Switzerland, 2016, 31–51
  • [33] Mohan S., Hershenson M., Boyd S., Lee T., Simple Accurate Expressions for Planar Spiral Inductances, IEEE Journal of solid-state circuits, 34 (1999), no. 10, 1419-1424
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eebf6f2c-73ed-4c4a-84ad-dc1a8f92659b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.