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Abstract: A bi-objective MILP model for optimal routing in a dynamic
network with moving targets (nodes) is developed, where alltargets are not
necessarily visited. Hence, our problem extends the movingtarget travelling
salesman problem. The two objectives aim at finding the sequence of targets
visited in a given time horizon by minimizing the total travel distance and
maximizing the number of targets visited. Due to a huge number of binary
variables, such a problem often becomes intractable in the real life cases.
To reduce the computational burden, we introduce a measure of traffic den-
sity, based on which we propose a time horizon splitting heuristics. In a
real-world case study of greenhouse gas emissions control,using Automatic
Identification System data related to the locations of shipsnavigating in the
Gulf of Finland, we evaluate the performance of the proposedmethod. Dif-
ferent splitting scenarios are analysed numerically. Evenin the cases of a
moderate scale, the results show that near-efficient valuesfor the two ob-
jectives can be obtained by our splitting approach with a drastic decrease
in computational time compared to the exact MILP method. A linear value
function is introduced to compare the Pareto solutions obtained by different
splitting scenarios. Given our results, we expect that the present study is
valuable in logistic applications, specifically maritime management services
and autonomous navigation.

Keywords: travelling salesman; time dependent network; multi-objective
optimization; integer programming

1. Introduction

In many real-world applications, there is a need to find an efficient route passing through
all or a subset of nodes in a network. One of the classical routing problems is to find a
Hamiltonian circuit of minimal total weight, connecting all nodes in a weighted undi-
rected graph; this fundamental problem, known as the Travelling Salesman Problem
(TSP), is NP-hard (Garey and Johnson, 1979), as it appears innetwork logistics and
computer science (Papadimitriou and Steiglitz, 1982). Classical formulations of TSP
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include integer linear programming models, but the presence of an enormous (usually
exponential) number of sub-tour elimination constraints makes the problem intractable
in terms of solving by means of standard exact methods. Significant improvement can
be achieved whenever branch and bound methods are equipped with cutting plane gener-
ation techniques (Applegate et al., 2007) allowing for computing the optimum for truly
large scale networks with the help of supercomputers. The usage of modern heuristics
allows for processing of networks up to a million nodes on standard CPUs, and such
instances can be resolved to optimality with 2-3 percentageaccuracy (see Rego et al.,
2011).

In addition to the size of the network, the presence of multiple objectives essentially
contributes to problem complexity. Under multi-objectiveframework, a solution that is
optimal with respect to one objective may have poor values for the others, and thus may
be unacceptable for a decision maker in practical situations. Therefore, many problems
arising in optimization should be ultimately considered under multi-criteria framework
due to the existence of several conflicting goals or interests (Branke et al., 2008).

Classical TSP has many variations, including Time-Dependent TSP (TDTSP), where
the edge cost depends not only on the distance between nodes (cities), but also the time
when transition happens in the tour. This feature introduces a new level of complex-
ity since now optimal sequencing depends on the time, in which every node is visited.
Time dependent nature of routing has to be properly addressed in such models (see, e.g.,
Androutsopoulos and Zografos, 2009; Groba, Sartal and Vázques, 2015). The problem
was formulated as an integer linear programming model by Fox(1973) for brewing in-
dustry. Other early linear and quadratic integer programming models can be found in
Fox, Gavish and Graves (1980) and Picard and Queyranne (1978). In distribution and
scheduling problems, the travel cost between customers in acongested urban environ-
ment is a function of traffic density, which varies over the time of the day (Malandraki
and Daskin, 1992). Vander Wiel and Sahinidis (1996) introduced a Mixed Integer Linear
Programming (MILP) formulation for the problem, using linearization of the quadratic
assignment TDTSP model of Picard and Queyranne (1978) and solved it by an exchange
heuristic on the underlying multipartite graph. The formulations of Picard and Queyranne
are the base models for many other approaches, developed forTDTSP, including the
studies of Bianco, Mingozzi and Ricciardelli (1993) and Lucena (1990). Unlike previous
studies, where time-dependency is addressed in terms of travel times, Taş et al. (2016)
focused on minimizing the total route duration with linear and quadratic service time
functions. They describe the basic properties for certain classes of service time func-
tions, and, based on that, they state conditions under whichwaiting can be beneficial.
Another variant of TSP is referred to asmoving-target TSP, where the problem is to find
the fastest tour while intercepting all moving targets. Helvig, Robins and Zelikovsky
(2003) studied moving-target TSP with the assumption that nodes are moving linearly
with a constant velocity. Under such assumption, no waitingtime exists in an optimal
tour.

TDTSP models assume nodes of the graph to be stationary. As a result, the location of
the last visit does not need to be reserved. One common approach for weighting the edges
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of a time-dependent graph is to handle the travel cost function as a step function (Furini,
Persiani and Toth, 2016; Malandraki and Daskin, 1992) depending on the time of the day
with a small number of time slots. In our model, we deal with a significantly larger num-
ber of time slots, compared to studies referred above. On theother hand, they deal with
minimization of the total travel time. A time indexed formulation was recently published
by Vu et al. (2019) for solving the Time-Dependent Travelling Salesman Problem with
Time Windows (TD-TSPTW), which is defined on a time-expandednetwork. It is solved
in the dynamic discretization framework, based on FIFO (First-In First-Out) property
on travel times, with the objective of minimizing the total tour duration including wait-
ing time. In such a case, waiting occurs when the traveller arrives at a location before
the corresponding time window opens. Vu et al. (2019) testedtheir method on generated
instances using a piecewise linear travel time function, which satisfies the FIFO property.

The aim of our research is to develop a mathematical model andsolution approach
for finding an optimal itinerary plan for an environmental surveillance vessel navigating
in a specific area of the sea among traffic lines for measuring greenhouse gas emissions
from major ships, such as passenger ferries, cargo ships andtankers. The importance of
the subject is due to the fact that shipping accounts for overthree percent of global green-
house gas emissions. Sulphur emission in European waters are several times higher than
from all passenger cars in Europe in total, according to Mikkonen (2019). As for other
possible applications, the proposed formulation can be applied in maritime surveillance
operations (Marlow, Kilby and Mercer, 2007) to detect illegal activities, for purposes of
airdrop for replenishment of naval vessels (Hewgley and Yakimenko, 2012), in the resup-
ply of patrolling ships by a supply vessel, or for fish aggregating devices (Groba, Sartal
and Vázques, 2015).

In this case study problem there are two objectives, aiming to minimize the total travel
distance and maximize the number of measurements done. The proposed model finds ef-
ficient alternatives for the number and the sequence of shipsvisited, as well as the start
times and locations of each measurement process. Additional features of the real-world
case study create some main differences between the presentand previously proposed
models. In our model, there is no assumption on traffic density distribution or travel time
sequence chart. In a dynamic network, the objective of minimizing travel distance and
travel time are very different. In contrast to the moving target model in Helvig, Robins
and Zelikovsky (2003), waiting in some time slots can be beneficial when minimizing
the distance or fuel consumption. We include the waiting possibility such that the time
and location of each ship visited is reserved for possible connection to the next target. In
distinction from previous models, visiting all ships is no longer possible in the given time
window, due to multiple factors, such as a large working area, speed of the surveillance
vessel, limitation in working hours, and fuel consumption.Consequently, our problem
turns into a bi-objective model for minimizing the travel distance and maximizing the
number of nodes visited.

We develop a bi-objective model for optimal routing in a dynamic network with mov-
ing targets, where all targets are not necessarily visited.Hence, our problem extends the
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moving target travelling salesman problem, in which the goal is to minimize total travel
time while visiting all targets. The problem setting is in our case different: givenn targets
and a positive integerα ≤ n, choose simultaneously a subsetA (of α targets) from a set
N (of n targets), as well as an optimal itinerary for visiting all targets in the subsetA.
Thus, we define our problem as the following two-level optimization problem:

min
A⊆N

{ z(A) | |A|= α }

wherez(A) is defined as the minimum travel distance in the inner level problem of a mov-
ing target TSP, defined by the setA. We introduce a mathematical programming model
to solve such new extension of TSP for which, to the best of ourknowledge, there is no
model in the existing literature that can be directly applicable to solve our case study. Of
course, when we discuss extensions of TSP, appearing in the literature, unavoidably there
are similarities in various formulations as well.

In the next section, the problem is defined and a MILP model is proposed for finding
the efficient frontier of the bi-objective problem. In Section 3 a density measure is in-
troduced for splitting the time horizon, and the proposed model is applied on sequential
sub-intervals, each finding a sub-route. The numerical experiments and discussion on
the performance of the proposed model on real-world datasets are presented in Section
4. Section 5 concludes the paper and introduces the directions for further works.

2. Problem description and MILP formulation

The optimization problem addressed in this paper arises from a real logistic problem
of finding an optimal routing for a vessel measuring greenhouse gas emissions from
ships in a specific area of the sea, referred to as theworking area. The present model
can be considered as an extension of Picard and Queyranne’s (1978) formulation. We
characterize our problem as follows: Consider a variant of TSP problem with dynamic
nodes; i.e. locations of nodes change over time. The nodes (ships) move along estimated
routes. They are present in the network only during their time window: the window starts
when the ship enters the working area and ends when it leaves the area. The bi-objective
vector maximization problem is to determine how the surveillance vessel with a given
maximum speed should travel among moving nodes assuming twocriteria: (1) traveling
the shortest possible distance, and (2) visiting as many ships as possible. Unlike in TSP,
all ships need not be visited. An animated illustration of the underlying dynamic network
and an example of optimal routing can be found in Github (2020).

2.1. Mathematical formulation

Let T denote the time horizon, during which the travelling by the surveillance vessel is
done, let indicesi = 1, . . . ,n refer to ships present in the working area sometime during
T , and leti = 0 refer to the depot (harbour).

In order to formulate the problem as a combinatorial problem, we discretize the time
horizonT into m time slots by time pointst0 < · · · < tm wheret0 andtm points refer to



Bi-objective routing in a dynamic network: an application to maritime logistics 215

the beginning and the end ofT , respectively, and we assume that the locations of ships
remain unchanged during each time slot. Them time slots are of equal lengthw; hence
t0 = 0 andtk = kw, for k = 1, . . .m. Henceforth, fork = 1. . .m, time slotk refers to the
interval [tk−1, tk) = [(k − 1)w,kw), and time slotk = 0 denotes the initial time pointt0.
Visiting of a shipi needs a processing timepi before leaving and visiting the next ship;
for the depoti = 0, let p0 = 0. The time slots are chosen short enough not to include
more than one processing, that isw < 2pi, for all i > 0.

For i = 0,1, . . . ,n, a shipi is considered as being present in the working area only
during its time window{tai , . . . , tbi} ⊆ {t0, t1, . . . , tm}* . For the depot,i = 0, we assume
{ta0, . . . , tb0} = {t0, . . . , tm}. For i ≥ 0, let vk

i ∈ R
2 be a coordinate vector stating the

location of shipi at time slotk ∈ {ai, . . . ,bi}. Given that the locations of ships remain un-
changed during each time slot, we obtain the coordinates ofvk

i from the moment(k−1)w,
which is the beginning moment of time slotk †.

We define a network flow model over a layered graphG . Each layer corresponds to
a fixed time slotk = 0, . . . ,m and consists of nodes defined by coordinate vectorsvk

i , for
i = 0, ...,n, that is, the coordinates of ships in theirkth time slot. If for a shipi, we have
k /∈ {ai, . . . ,bi}, then shipi is not present in time slotk and thus the corresponding node
does not exist in layerk. LetN k = {vk

i |i ∈ {0, ...,n}, k ∈ {ai, . . . ,bi}} be the set of nodes
vk

i of all ships present at time slotk. We assume thatvk
0, the depot node, is present in all

layers ofG andi = 0 is non-moving during the time horizonT . Therefore, the traveller
can start from and return to the depot at any time to complete the tour. The edges of the
graph connect the nodes of a layer to those of the later layers.

Let A kl = {(vk
i ,v

l
j)∈N k×N l |l > k} be the set of directed edges connecting nodes

in a pair of layersk andl, with sources inN k and terminals inN l . Thus,G is a multi-
partite directed graph consisting of the union of all sets ofnodesN k and their pair-wise
connecting edges inA kl . Because at most one processing is possible in each time slot,
the nodes in the same layer inG are not connected. The schematic representation of the
graphG is illustrated in Fig. 1.

The weight of each edge(vk
i ,v

l
j) is defined as the Euclidean distance between the co-

ordinates of the nodesdkl
i j = ||vk

i − vl
j||. The speed of the vessel is assumed to be limited

by a fixed valuec. Therefore, corresponding to each distancedkl
i j there is a minimum

travel time with the speedc, which is denoted byδ kl
i j = dkl

i j /c.

As mentioned before, the resulting problem has two objectives: minimizing the travel
distance and maximizing the number of nodes visited during the time horizonT . We de-
note the two criteria byz andα, respectively. Ifu(α,z) is a value function representing

* Ships can exit the working area and come back several times, in which case their time window is composed
of disjoint sequences of time slots.

†Different shipsi and j can be in the same location ifvk
i = vl

j ; however, we havek 6= l; i.e., the ships can be
at the same locations but not at the same time.
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Figure 1. Representation of graphG with three ships and three time slots

preferences of the decision maker, then the objective is to find α andz which maximize
u(α,z). Given thatα and−z are subject to maximization, we have∂u/∂α > 0 and
∂u/∂ z < 0 and the optimal solution(α,z) is Pareto optimal; i.e., an optimal(α,z) is on
the efficient frontier. Given that an estimation foru is available, the problem results in
a single objective optimization. In a special case, the value functionu is linear. In this
caseu is a weighted sum scalarization; this amounts to giving eachobjective a weight
and maximizing the weighted aggregation. The case of a linear value function is demon-
strated in Section 4.

For the bi-objective problem, we may determine the efficientfrontier first and let the
decision maker choose the most preferred solution thereafter. For computing the efficient
frontier, several options exist. First, using a set of linear value functions, the calculation
is efficient since the value functionu(α,z) is a linear objective function; however, only
the supported Pareto points can be found. Second, using the reference point method
(Wierzbicki, 1982) employing Chebyshev scalarization, all the Pareto points can be de-
tected, but this type of scalarization is computationally more challenging. More on multi-
objective optimization methods can be found in Miettinen (1998).

Observing that the objectiveα (ships visited) has positive integer values, a simple
method, which we use to handle the bi-objective problem, is to deal with the objectiveα
as an additional constraint. That is, we set a goal for the value ofα by considering it as
a constraint, and solve the problem of minimizing the objective z (the distance travelled)
while meeting the goal onα. Solving such problems forα = 1,2,3, . . . yields the effi-
cient frontier‡.

The minimization of travel distance employs binary variablesxkl
i j , which are equal to

1 if nodevl
j is visited immediately after nodevk

i and 0 otherwise. Formally, define the

‡In practice, finding solutions that involve the inspection of only a few ships, for instance 1 or 2, may be
unnecessary. Thus, evaluating only a part of the efficient frontier is needed, and the decision maker might set a
threshold level forα , under which the efficient points are of no interest, and therefore, need not be evaluated.
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domain of binary variables as follows:

xkl
i j ∈ {0,1} ∀ i, j = 0. . .n(i 6= j) ∀ k, l = 0. . .m (k < l),

where each binary variablexkl
i j is defined only if both nodesvk

i andvl
j are in the working

area. While the latter condition is of course implemented inour computer code, for no-
tational convenience, in the sequel we suppress such feasibility sets forvk

i andvl
j.

In this notation, the total travel distance is given as follows:

z =
m

∑
k,l=0
(l>k)

n

∑
i, j=0
(i6= j)

dkl
i j xkl

i j . (1)

We define an integer parameterα to indicate the number of visits. The Pareto frontier
could then be generated in terms ofz versus parameterα by varying it over the set
{1, . . . ,n}. Givenα, the goal constraint is formulated as follows:

m

∑
k,l=0
(l>k)

n

∑
i=0, j=1
(i6= j)

xkl
i j = α. (2)

Initially, the flow starts from depot nodevk
0 at the time slotk ≥ 0. If the decision is

made to move to somevl
j (l > k, j 6= 0), thenxkl

0 j = 1. At the time slotm the surveillance
vessel is supposed to be back to the depot, so the time slotm is not included in the
summation. Therefore, the following constraint ensures exactly one exit from depot node
and the first visit after that:

m−1

∑
k,l=0
(k<l)

n

∑
j=1

xkl
0 j = 1. (3)

If ship j > 0 is visited in the time slotl, 0< l < m, then the flow should enter the node
vl

j from some nodevk
i with i 6= j at an earlier time slotk < l, and exit the nodevl

j to some

nodevk
i with i 6= j at a later time slotk > l. So, initialized by the constraint (3), one unit

of flow propagates throughout the nodesvk
i andvl

j in each intermediate step, which is
ensured by the following balance constraints (flow conservation):

l−1

∑
k=0

n

∑
i=0
(i6= j)

xkl
i j =

m

∑
k=l+1

n

∑
i=0
(i6= j)

xlk
ji ∀ j = 1...n ∀l = 1...m−1. (4)

The flow conservation constraint (4) maintains the connection of time slots and elimi-
nates route breaks at the time slotl. Finally, for somei > 0 andk < m, after visiting ship
i at the time slotk the flow is forced to turn back to depot nodevl

0 at some time slotl > k.
This is achieved using the following constraint:

m

∑
k,l=1
(l>k)

n

∑
i=1

xkl
i0 = 1. (5)
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The constraints (3)–(5) are based on the classical formulation of TSP, which is modified
for the dynamic network. However, we observe that constraint (5) is in fact redundant,
because it is implied by (3) and (4). The single equation (5) presumably does not harm
optimization, or it may even speed up computation. Note thatsub-tour elimination results
from l > k for all xkl

i j , so that no nodevk
i can be re-visited. To see this, assume that a sub-

tour starts at some nodevk
i , passes a sequence of nodes{vl

j} with l > k and returns from

some nodevl
j to the starting nodevk

i ; but thenk > l, which is a contradiction. Hence, a

sub-tour is not possible. Thus,l > k implies that the vessel will not visit nodevk
i more

than once, but we also need to guarantee that each shipi > 0 will not be revisited at some
later timel > k, by the following inequality:

m

∑
l,k=1
(l>k)

n

∑
j=0
(i6= j)

xkl
i j ≤ 1 ∀i = 1...n. (6)

By the set of constraints (2)–(6), we start from the depot, visit a sequence ofα nodes
along the route{(vk

i ,v
l
j)|x

kl
i j = 1} and return back to the depot. So, for each fixed value

of α in (2), a Hamiltonian circuit{vk0
0 ,vk1

i1
, . . . ,vkα

iα } can be generated.

To create a feasible schedule, we need to force visiting eachnodevk
i within the time

slot k. Firstly, if a visit occurs within the time slotk, then the associated start time of
processingsk should fall into the same time slot, and as a result satisfy the following
constraint:

t0+w(k−1)≤ sk ≤ t0+wk ∀k = 1...m. (7)

For k = 0, s0 = t0 is the time of starting fromv0
0 at the beginning of the horizonT .

Recall that parameterw is the length of the time slots; i.e.,w = tk − tk−1, for k = 1, . . . ,m,
determining the scale of granularity for time discretization. Smaller value forw gives
more accurate locations for the nodesvk

i , but a larger size of the network in return. So,
there is a trade-off between the time complexity and accuracy of the location. Secondly,
we need to reserve enough time for processing and travellingto the next ship for a visit.
This is assured by the following scheduling constraint:

sk +
n

∑
i, j=0
(i6= j)

(pi + δ kl
i j )x

kl
i j ≤ sl ∀k, l = 0...m (k < l). (8)

To further clarify what variablesk represents, if a ship is visited in time slotk, thensk

is the time stage of starting the measurement (serving) within the time slotk. Under our
assumptions, at most one ship can be served in a single time slot. If no ship is served in
time slotk, thensk may be any time stage in time slotk, satisfying (7). The binary vari-
ablesxkl

i j indicate which ship (if any) is served in time slotk; i.e.,xkl
i j = 1 (for some ship

j and time slotl > k) implies that shipi is served in time slotk. Additionally, constraint
(8) builds the link between shipsi and j, and starting timessk andsl . Consequently, there
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is no need to include the ship index in starting timessk. Note that optimal waiting time
at nodevl

j is implied by the slack in the inequality (8).

To interpret the waiting time, assume nodevk
i is visited first, followed by visiting

nodevl
j thereafter, and the vessel can reach locationvl

j with constant speedc before the
beginning of time slotl; i.e., before time stage(l −1)w.

The solution of the MILP model (1)–(8) gives the shortest path for processingα
ships, as well as the start times of processing each ship in a given time horizonT . We
refer to (1)–(8) as the Bi-objective Dynamic TSP (BDTSP) model.

In TDTSP a function of timet is used for calculating the travel time among nodes,
but the nodes are stationary and thus a small number of time slots is sufficient to plan
for the whole day (for example morning and evening rush hoursand lighter traffic in
mid-day). Unlike in TDTSP, due to the moving targets, the number of time slotsm in the
above model is relatively large and the size of our model grows quadratically with the
number of time slots. More precisely, it contains 0.5m2+(1.5+n)m+3 constraints. An
upper bound for the number of binary variables is 0.5n2m2. The exact number depends
on the length of the time window for each ship in terms of the time slots. For different
values ofα, the model returns the Pareto optimal solutions for the problem BDTSP. It
can be solved by standard MIP solvers, however, the huge number of binary variables and
constraints make the problem intractable when based on large-size real-world datasets.
In the next section, a method is proposed, which returns a near-optimal (near-efficient)
solution within a significantly lower execution time compared to that of the exact method.

3. Solution methods

Standard software may be directly applied for solving BDTSP, defined by (1)–(8); how-
ever, in real-world cases the number of ships and time slots tend to be prohibitively large.
Next, to deal with such curse of dimensionality, we considertwo rather straightforward
but valuable options: first, reducing the number of binary variables by preprocessing, and
second, employing heuristics for splitting the time horizon T into consecutive subinter-
vals and finding for the sub-intervals the inter-linked partial routes, which jointly form
a Hamiltonian circuit overT . The novelty of the splitting heuristic is to introduce a
measure of traffic density to be employed for time horizon splitting.

Preprocessing

For each shipi, each nodevk
i of the graph on the layer of time slotk is connected to

all other nodesvl
j of ships j 6= i on all later layers of time slotsl > k. However, not

all of these links are feasible in terms of actual travellingwith the limited speed of the
surveillance vessel. As defined earlier, given the distancedkl

i j from nodevk
i to vl

j, the time

to travel between the two nodes with the constant speedc is δ kl
i j = dkl

i j /c. Given the length

w of a single time slot, the binary variable valuexkl
i j = 1, indicating travel from nodevk

i

to vl
j, cannot occur ifδ kl

i j ≥ w− pi+w(l−k); i.e., even if the processing of shipi starts at
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the beginning of time slotk, the arrival time in the locationvl
j is beyond the time slotl. In

such instances, the edge(vk
i ,v

l
j) and the binary variablexkl

i j are omitted from the model.
In practice, a large fraction - say about one half - of the binary variables may be omitted.

The splitting approach

One simple heuristic is to split the time horizonT into several sub-intervals and run the
model on each sub-interval to construct a part of the route within the entire horizonT .
We consider heuristics for choosing such splitting shortly. As a result of splitting,Q
sub-intervals are created, and we solve BDTSP separately oneach sub-intervalTq, for
q = 1,2, . . . ,Q. For the first sub-intervalT1, v0 is the depot node to start with, and for
the last sub-intervalTQ, the flow is forced to turn back to the depot nodev0. For each
sub-intervalTq with q < Q the flow is forced to end at some nodevl

j for j 6= 0 such that
time slotl is in Tq. Since the route over a sub-interval will be connected to theend of the
route generated for the preceding sub-interval, for all sub-intervalsTq with q> 1 the flow
begins in the location of terminal node of the preceding sub-intervalTq−1, and the time
slot when service is completed for that terminal node. Theserules imply minor modifica-
tions in the depot node conditions (3) and (5). Also the service completion time from the
preceding sub-intervalTq−1 determines the start time in (8). For brevity, we omit further
discussion on such straightforward reformulations.

For eachq, after solving BDTSP on sub-intervalTq, all shipsi > 0 visited duringTq

will be removed from the the original set ofn ships so that they are not visited again in the
subsequent sub-intervals. Letnq denote the number of remaining ships in sub-interval
Tq, i.e., ships present in the work area sometime duringTq, but not visited before the
beginning ofTq. After solving BDTSP on all sub-intervalsTq, the sum of travel distances
and total number of ships visited are calculated yielding a near-efficient solution(α,z)
for the bi-objective problem.

For each sub-intervalTq, for choosing the numberα ∈ {1,2, . . . ,nq} in (2), obviously
a number of alternative strategies may be employed. However, we restrict our discussion
below in a strategy aiming to find a near-efficient solution onthe entire horizonT such
that the total number of ships visited is possibly large. This is justified from the per-
spective of emissions control needs. Such strategy is also studied in the computational
comparisons reported in Section 4.

Time splitting

Splitting of the time horizonT will remove links between nodes that fall into distinct
sub-intervals. In general, the splitting approach leads tosub-optimality over the entire
horizonT . Therefore, we wish to detect those links, which have low chance of being a
part of the global optimal solution. Based on the dataset properties, we try to find good
split points in the sense that optimization over sub-intervals would only mildly violate
the global optimality, and yet it would help reducing the time complexity considerably.
For this aim, we define a criterionS (k) for measuring the sparsity of ship distribution in
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the working area at each time slotk. We call it the sparsity function, defined as follows:

S (k) =
1

r2(k)

n

∑
i, j=0
(i6= j)

dkk
i j , (9)

wherer(k) is the number of ships present in the work area in the time slotk. In fact,
S (k) is proportional to the average pair-wise distances of shipspresent in the time slotk.
Intuition suggests that the extreme values of the sparsity function are relevant to choosing
good split points. When the function value is maximal, the ships may be concentrated
in a small area. This would minimize excessive travel distance of the surveillance vessel
between the end node of the previous sub-interval and the starting node of the next sub-
interval. On the other hand, when the split point is selectedat the minimum value of the
sparsity function, more ship movements are concentrated inside the sub-intervals, thus
the optimal edge will not probably be a link to a faraway future time slot. This could give
more room for optimizing corresponding optimal routes. However, these are not general
rules as the location of best split point might depend on other characteristics of the traffic
pattern during one day. For example, if a large number of ships arrive in the next split, we
make this unseen by cutting the link to those ships. To discover the best candidate for a
split point, we experiment with varying degree of sparsity,ranging between the extreme
points of the sparsity function (9). Results are discussed in Section 4.

Finding a near-efficient route visiting many ships

Again, as a result of splitting, assumeQ sub-intervalsTq, for q = 1,2, . . . ,Q, are created.
We solve the routing problems one by one for sub-intervalsTq, and letnq denote the
number of ships present in sub-intervalTq after removing those already visited beforeTq.
When the model onTq is solved, the value ofα is initially fixed tonq, and this maximum
value is assigned to the equation (2). In case no feasible solution is found, the value ofα
is reduced by one in the next trial. Such iterations continueuntil an optimal solution is
found for the BDTSP on sub-intervalTq. The next sub-interval starts after the processing
ends at the last visit inTq. Hence, a continuous route is generated after optimal solutions
are found for all sub-intervals. Finally, the total travel distancez and the total number of
ships visitedα are calculated over the entire horizonT .

4. Computational results

The objectives and outline of this section are as follows. After describing the empirical
setting, we show illustrative examples of Pareto solutions, depict an efficient frontier, and
demonstrate computation of some efficient points. The overall objective of this section is
to compare the heuristics against exact solution in terms ofcomputing time and accuracy
of the heuristics (relative distance from the efficient frontier).

For the exact MILP model and for the splitting approach we usethe CPLEX 11.2.1
solver on an Intel(R) Core i7 6500U @ 2.5GHz with 12GB of RAM onWindows 64
bit operating system. The MIP relative gap tolerance is set to 0.01 with other default
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Figure 2. Pareto optima forJuly 5 dataset with 29 ships present in the working area
during T=[8:10,14:30] UTC+3. Circles show the real locations of ships in the working
area at different time slots (nodes of the graph). Black lineshows the optimal route.α
is the goal for the number of visits andz is the corresponding minimum travel distance
(km)

settings for the solver in all experiments. The time limit isset to 4 hours for CPLEX on
the complete time horizon (to find an optimal solution withingiven tolerances without
splitting) and to 10 minutes for sub-intervals in the splitting approach.

The experiments are done on seven real-world data sets for which AIS (Automatic
Identification System) data of all ships navigating in the Gulf of Finland are collected via
open interface of the Finnish transport infrastructure agency (Väylävirasto, 2019). Based
on the real locations of ships, the geographic coordinates are predicted for every minute
over 11 hours per day for one week in July 2018. The predictionmodel of Virjonen et al.
(2018) is used for location estimation. The length of time slots is set tow = 5 minutes
(m = 132 time slots for one day). The processing timepi = 3 minutes for all shipsi and
speed limit of 25 knots (46.3 km/h) for the surveillance vessel are used in all experiments.
We do not restrict the network to any distribution or traffic density assumption.

As an illustrative example,July 5 dataset is chosen withn = 29 ships present during
the time horizon T=[8:10,14:30] equivalent tom = 76 time slots. Two Pareto solutions
are depicted in Fig. 2 and the Pareto frontier for(α,z) is plotted in Fig. 3. As expected,
the minimum distancez as a function of the number of measurementsα is increasing.
However, some of the efficient points are not supported due toviolation of convexity. We
use equality in constraint (2) to get all Pareto points including the non-supported points.

In order to study the performance of the splitting approach,we carry out two sets of
experiments from small to moderate scale problems with 43 and 86 time slotsm. The
Pareto solutions are computed using the exact method for themaximum possibleα values
as well as for some smaller values used for the comparisons with the splitting approach.
Finding the maximum possibleα for the exact MILP model is done by iteratively solv-
ing the model for different values ofα; this is a highly time consuming task for large
problems, since long execution time is also needed for eachα to prove infeasibility. For



Bi-objective routing in a dynamic network: an application to maritime logistics 223

Figure 3. Pareto frontier forJuly 5 dataset with 29 ships present during T=[8:10,14:30]
UTC+3

the comparisons, we also report solutions for each dataset with different scenarios using
the splitting approach, introduced at the end of Section 3 for finding solutions in case of
largeα values.

Based on the exact model, solved by CPLEX, for the small and moderate scale prob-
lems, each with seven datasets of July, Tables 1 and 2 show efficient solutions; the total
distance (km)z travelled, and the number of measurementsα. TheNodes column indi-
cates the number of nodes|∪k∈{0,...,m}N k| in the generated graph;Targets is the number
n of ships present in the working area during the chosen time horizon;Time is the solver
CPU time in seconds. Note that within the time horizon, it is not possible to visit alln
ships; i.e., we haveα < n in all cases.

For the splitting approach, based on the sparsity functionS (k), we adopt three sce-
narios for comparison to identify good candidates for splitpoints. The scenarios are
defined forQ = 2, splitting the time horizonT into two sub-intervals. To avoid too short
or too long sub-intervals, some lower and upper limitsl andu are chosen for split points
k as follows: the limits for small problems are set tol = 19 andu = 31, and for mod-
erate scale problems tol = 30 andu= 60. The three splitting scenarios are the following:

Scenario 1. Split pointk maximizesS (k) in the range ofl ≤ k ≤ u,
Scenario 2. Split pointk minimizesS (k) in the range ofl ≤ k ≤ u,
Scenario 3. Split pointk is given by the mid-pointk = (l + u)/2.

Scenario 3 serves as a benchmark for verifying possibly enhanced quality of solutions
of theScenarios 1 and 2, which are based on the extrema ofS . As an example, Fig. 4
shows the fluctuations in the number of shipsr(k) present in time slotk and the sparsity
functionS (k) for July 5 dataset over the time horizon T=[8:10,14:30].
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Table 1. Efficient solutions for seven datasets of July 2-8, 2018, with 43 time slots (small
scale problems)

Dataset Nodes Targets α z (km) Time (s)
July 2 289 19 15 76.9 2.3

14 65.9 1.9
13 55.9 1.7
12 50.4 2.6

July 3 421 27 20 98.8 9.7
19 80.6 6.1

July 4 271 19 14 74.6 2.4
July 5 340 22 19 107.1 10.3

18 87.7 9.4
July 6 192 21 9 56.0 0.7
July 7 437 25 19 107.1 2616

18 73.9 268
17 68.4 52.6
16 60.0 6.2

July 8 360 28 16 93.8 1110
15 67.7 8.8
14 58.9 5.1
13 54.4 5.8

Table 2. Efficient solutions for seven datasets of July 2-8, 2018, with 86 time slots
(moderate scale problems)

Dataset Nodes Targets α z (km) Time (s)
July 2 507 25 24 139.4 15.2

23 104.1 13.5
22 92.2 12.6

July 3 775 44 35 174.1 11865
July 4 500 30 25 180.7 359

24 88.8 5.42
July 5 725 38 34 150.4 1382

33 135.5 4211
July 6 619 33 25 159.0 2359

24 129.4 1280
July 7 683 35 31 156.9 3020

30 133.9 2747
29 122.2 2543

July 8 748 45 33 146.8 6489
32 128.0 2495
31 112.7 1364
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Figure 4. Characteristics of July 5 dataset for 29 present ships during T=[8:10,14:30]
UTC+3 (m = 76 time slots). The horizontal axis shows the time slotsk. The upper
diagram is the value ofS (k). The lower diagram is the number of shipsr(k) present in
each time slotk

Computational results for the three splitting scenarios are shown in Table 3 for small
problems and in Table 4 for moderate scale problems. Givenα, the Speed-up factor
is defined as the CPU time taken by CPLEX to solve the exact model (columnTime in
Tables 1-2) divided by the time taken by the splitting approach. According to the re-
sults, the splitting approach finds values ofα very near to the maximum levels reported
in Tables 1 and 2. The decrease in computational time is highly significant with respect
to the time required for solving the exact problem (seeSpeed-up columns in Tables 3
and 4). Furthermore, in general, the splitting approach frequently returns near-efficient
distancez; see columnsρ = (z− z∗)/z∗ in Tables 3 and 4, showing the relative deviation
(%) of distancez from the exact minimum distancez∗. Results obtained on larger scale
problems of Table 4 show in most cases the practicality of using the splitting approach
in terms of computing time for finding a near-maximumα, in addition to a near-efficient
distance valuez. The largest problem solved among these experiments, in terms of the
number of binary variables, is related toJuly 3 dataset, using 86 time slots with 286,819
binary variables. As can be seen in Table 4,Scenario 2 returns a near-optimal solution
while reducing the solution time from 3 hours and 18 minutes to 2 minutes, thus achiev-
ing the speed-up factor of 99. Similarly, forJuly 4, bothScenario 1 and 2 found in few
seconds a near-efficient solution with 1 to 2 % relative deviation. The results of Table 3
and Table 4 provide us with a perspective for computational speed-up in case of larger
sets of test data. Thus, extra computations may not yield extra value to our results. Fur-
thermore, for our practical purpose, the small to moderate scale examples are the case,
whose speed-up level is sufficient.
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Table 3. Three split scenarios for seven datasets of July 2-8, 2018, with 43 time slots
(small scale problems);ρ = (z − z∗)/z∗ (%) is the relative distance from the efficient
frontier

Scenario 1 Scenario 2 Scenario 3
Dataset α ρ (%) Speed-

up
α ρ (%) Speed-

up
α ρ (%) Speed-

up
July 2 13 50 1.0 12 47 2.2 12 87 2.2
July 3 19 12 1.7 19 15 1.7 6 6 1.1
July 4 14 1 2.7 14 2 3.4 14 16 3.4
July 5 19 0 2.3 18 19 5.2 18 1 5.2
July 6 9 9 1.4 9 0 1.4 9 6 1.7
July 7 18 1 39.9 16 33 2.8 18 31 29.1
July 8 15 22 4.9 13 51 3.4 14 16 3.4

Average 15.3 13.5 7.7 14.4 24.0 2.9 15.0 30.4 6.6

Regarding the good candidate for a split point, let first consider an aggregate compar-
ison based on each criterion separately: the average ofρ (the relative distance from the
efficient frontier) and the average ofα (the number of ships visited). The average values
are shown in the last rows of Tables 3 and 4. Results show thatScenario 1 dominates
Scenarios 2-3 in small examples, but not in moderate scales examples;Scenario 2 has
less relative distance from the optimum with the same value of visited nodes on average.
Therefore, we cannot rank any of the Scenarios over the others based on the separate
comparisons for individual objectives.

Taking into account both objectivesz andα in a pairwise comparison, it is less clear
which among the three solutions is most qualified. By the termsolution quality we refer
to a characteristic, which indicates the answer to the following question:Is the greater
number of visits we achieve in one solution worth the amount of increase in travel dis-
tance compared with the other solution? As an example, we considerJuly 8 dataset in
Table 3, where two solutions(α,z), (15,82.4) and(13,82.1), are obtained by the first
two scenarios. Although the former does not dominate the latter, the solution ofScenario
1 is likely to be preferable, since by a relatively small increment in the distancez, two
additional measurements inα are possible. Non-dominated solutions§ are found by dif-
ferentScenarios for each dataset. Among the solutions shown in Tables 3 and 4, the
non-dominant solutions in both tables are indicated in boldface. In the following, based
on a unary indicator within a dataset, we would like to find outwhich scenario returns
the most qualified solutions among all.

In general, we need a solution quality indicator, a value function, to identify the

§A non-dominated solution here refers to an efficient point inthe set of three feasible solutions for a dataset
given in Tables 3 and 4, not in the set of all feasible solutions of the bi-objective problem.
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Table 4. Three split scenarios for seven datasets of July 2-8, 2018, with 86 time slots
(moderate scale problems);ρ = (z− z∗)/z∗ (%) is the relative distance from the efficient
frontier

Scenario 1 Scenario 2 Scenario 3
Dataset α ρ (%) Speed-

up
α ρ (%) Speed-

up
α ρ (%) Speed-

up
July 2 23 7 4.2 22 6 5.2 22 12 6.6
July 3 35 15 188.3 35 2 99.6 35 5 192.0
July 4 25 1 74.8 24 2 2.1 24 8 2.2
July 5 33 17 68.9 33 9 170.5 33 16 8.7
July 6 24 9 55.7 25 14 92.1 24 10 224.6
July 7 29 31 279.5 29 2 19.9 30 19 4.6
July 8 31 18 24.1 32 34 4.1 32 31 10.8

Average 28.6 14.0 99.3 28.6 9.9 56.2 28.6 14.4 64.2

preferred splitting scenario, to be found among the non-dominated cases. Various met-
rics have been proposed for comparing the quality of Pareto solutions of multi-objective
optimization problems; for a review on quality assessment metrics of Pareto points we
refer the reader to Riquelme, Lücken and Barán (2015) and Zitzler, Knowles and Thiele
(2008). The metrics which we apply for scenario comparisonsis a normalized lin-
ear scalarization (equivalent to a linear value function) of the two objectives in the bi-
objective problem. This measure employs reference points(αmin,zmax) and(αmax,zmin),
whereαmin andzmax (defining the nadir point) are the worst values in the datasetfor each
objective, andαmax andzmin (defining the ideal point) are the best values. The solution
quality indicatorIN is defined as follows:

IN(α,z) =
α −αmin

αmax −αmin
+

zmax − z
zmax − zmin

. (10)

The indicatorIN is an equally weighted sum of distances to the nadir point level of
each objective scaled by the difference of ideal and nadir point levels. In equation (10),
in case ofαmax = αmin for two given reference points, we simply set the first term equal
to zero. Similarly, ifzmax = zmin, we set the second term equal to zero. Figure 5 is a
schematic representation of Pareto optimal (solid line) and two nearly efficient (dashed
lines) frontiers, defining the two reference points. In manyapplications of rational choice
theory, a value function is a useful way of modelling preferences of the DM; however, the
equal weighting of the two objectives in the linear value function IN does not necessarily
represent preferences of the DM; the weighting coefficientswould need to be measured.

In distinction from what is common in value function applications, here for com-
paring the solutions obtained by splittingScenarios 1-3, we have to define the solution
quality indicator functionIN separately for each data set. Tables 5 and 6 show the values
of IN for each dataset in small and moderate scale cases. The best value of the three
scenarios in each dataset is shown in boldface (zeros in the tables are computational
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Figure 5. Schematic representation of an optimal (solid line) and two approximation
(dashed lines) of Pareto front along with the reference points. The coordinates are the
two objectives;α is the number of ships visited andz is the total travel distance (km).
The point(αmax,zmin) is the ideal utopia point of the bi-criteria problem and(αmin,zmax)
is the nadir point

zeros). In a given dataset, a scenario is best if it dominatesthe other two. Based on
indicatorsIN , it is evident from the results that choosing the extrema ofS as split points
(Scenarios 1 and 2) provides better chance of improving the quality of the solution than
using the naive splitting (Scenario 3). Among the cases in Tables 5 and 6, the indicator
IN ranksScenario 1 as the winner more frequently thanScenarios 2 and 3. Therefore,
conforming with intuition, the time slots with large average distances among ships are
good candidates for split points.

Table 5. Values of indicatorsIN(α,z) for three scenarios on small scale problems

Dataset (αmax, zmin) (αmin, zmax) Scenario 1 Scenario 2 Scenario 3
July 2 (15, 50.4) (12, 94.2) 0.57 0.45 0.00
July 3 (20, 80.6) (19, 104.3) 0.59 0.50 1.00
July 4 (14, 74.6) (14, 86.4) 0.95 0.89 0.00
July 5 (19, 87.7) (18, 107.1) 1.01 0.13 0.97
July 6 ( 9, 56.0) ( 9, 60.9) 0.00 1.00 0.33
July 7 (19, 60.0) (16, 107.1) 1.36 0.58 0.89
July 8 (16, 54.4) (13, 98.1) 1.03 0.36 0.34
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Table 6. Values of indicatorsIN(α,z) for three scenarios on moderate scale problems.

Dataset (αmax, zmin) (αmin, zmax) Scenario 1 Scenario 2 Scenario 3
July 2 (24, 92.19) (22, 139.43) 1.10 0.89 0.77
July 3 (35, 174.06) (35, 200.1) 0.00 0.90 0.67
July 4 (25, 88.80) (24, 182.7) 1.00 0.98 0.93
July 5 (34, 135.50) (33, 158.1) 0.00 0.44 0.04
July 6 (25, 129.42) (24, 180.8) 0.78 1.00 0.74
July 7 (31, 122.16) (29, 160.5) 0.00 0.93 0.54
July 8 (33, 112.71) (31, 172.0) 0.65 0.50 0.57

5. Conclusion and further research

In this paper, we consider optimal routing of a surveillancevessel measuring greenhouse
gas emissions of large ships in the Baltic sea. We develop a bi-objective MILP model
for finding a Hamiltonian circuit in a dynamic network formedby locations of ships over
time, maximizing the number of measurement jobs to be done and minimizing the to-
tal travel distance of the vessel. As an output, a set of Pareto optimal solutions can be
produced. Standard optimization software may be used for computing the efficient fron-
tier; however, cases in practice tend to lead to prohibitively large problems. To deal with
the curse of dimensionality, we suggest the model to be computationally tackled with a
time horizon splitting approach employing a sparsity function to determine the splitting
points. Thereby, near-efficient values for the number of measurement visits to ships and
for the total travel distance of the vessel can be obtained. The decrease in computational
time by using the splitting approach is highly significant, even for the moderate scale test
cases. For moderate size problems the solver execution timefrequently decreases from
hours to minutes. The characteristics of a good candidate for split point are investigated
by introducing a traffic sparsity function and examining thesplit points based on extrema
of the function versus naive splitting serving as a benchmark. According to the results,
time slots corresponding to most sparse traffic in the network are good candidates for
split points; an observation, which is in harmony with intuition.

As already noted, for large scale problems, exact solutionsmay not be available.
Even if the problem is solvable, for practical purposes it can take too long to determine
the solution. However, based on our results, using the splitting approach we can expect
fast solutions, which are of high enough quality relative tothe efficient frontier. Our
experiments have been performed on real historical data sets and evidence confirms that
the method can be efficiently used in practice for maritime routing management.

Further research will be directed at testing the model for some real situations in mar-
itime logistics and incorporating the model into a fully autonomous logistics navigation
system. Further work might also consist in studying whetherthe present results can be
improved by splitting the time horizon based on other features of the traffic pattern, such
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as clusters of ships instead of the sparsity function used here. A natural alternative as a
commonly used heuristic for this class of problems could be agenetic algorithm. Deal-
ing with uncertainty in the underlying graph and optimal routing under such uncertainty
is another subject for the future. This also leads to extending heuristics to routing and
scheduling under uncertainty.
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