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Abstract: A bi-objective MILP model for optimal routing in a dynamic
network with moving targets (nodes) is developed, whereaadjets are not
necessarily visited. Hence, our problem extends the mduaingt travelling
salesman problem. The two objectives aim at finding the sezpief targets
visited in a given time horizon by minimizing the total tr&wstance and
maximizing the number of targets visited. Due to a huge nurabbinary
variables, such a problem often becomes intractable indhElife cases.
To reduce the computational burden, we introduce a mea$urafiic den-
sity, based on which we propose a time horizon splitting iséias. In a
real-world case study of greenhouse gas emissions coasiog Automatic
Identification System data related to the locations of shgpadgating in the
Gulf of Finland, we evaluate the performance of the propasethod. Dif-
ferent splitting scenarios are analysed numerically. Hwaethe cases of a
moderate scale, the results show that near-efficient vdtrethe two ob-
jectives can be obtained by our splitting approach with stiralecrease
in computational time compared to the exact MILP method.n&dir value
function is introduced to compare the Pareto solutionsinéthby different
splitting scenarios. Given our results, we expect that tfesent study is
valuable in logistic applications, specifically maritimanagement services
and autonomous navigation.

Keywords: travelling salesman; time dependent network; multi-otbjec
optimization; integer programming

1. Introduction

In many real-world applications, there is a need to find aciefit route passing through
all or a subset of nodes in a network. One of the classicalngugroblems is to find a
Hamiltonian circuit of minimal total weight, connectind albdes in a weighted undi-
rected graph; this fundamental problem, known as the TiiageSalesman Problem
(TSP), is NP-hard (Garey and Johnson, 1979), as it appearstiwork logistics and
computer science (Papadimitriou and Steiglitz, 1982).s€ital formulations of TSP
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include integer linear programming models, but the presexican enormous (usually
exponential) number of sub-tour elimination constraintkes the problem intractable
in terms of solving by means of standard exact methods. f&gnt improvement can
be achieved whenever branch and bound methods are equijihexliting plane gener-
ation techniques (Applegate et al., 2007) allowing for catirg the optimum for truly
large scale networks with the help of supercomputers. Thgaisf modern heuristics
allows for processing of networks up to a million nodes omdéad CPUs, and such
instances can be resolved to optimality with 2-3 percentagerracy (see Rego et al.,
2011).

In addition to the size of the network, the presence of migltibjectives essentially
contributes to problem complexity. Under multi-objectiv@mework, a solution that is
optimal with respect to one objective may have poor valuegi® others, and thus may
be unacceptable for a decision maker in practical situatidimerefore, many problems
arising in optimization should be ultimately consideredi@nmulti-criteria framework
due to the existence of several conflicting goals or inter@tanke et al., 2008).

Classical TSP has many variations, including Time-Depeti@di8P (TDTSP), where
the edge cost depends not only on the distance between roties) ( but also the time
when transition happens in the tour. This feature introduc@ew level of complex-
ity since now optimal sequencing depends on the time, in kvbiery node is visited.
Time dependent nature of routing has to be properly addiessich models (see, e.g.,
Androutsopoulos and Zografos, 2009; Groba, Sartal andjiés, 2015). The problem
was formulated as an integer linear programming model by(E6x3) for brewing in-
dustry. Other early linear and quadratic integer programgnmodels can be found in
Fox, Gavish and Graves (1980) and Picard and Queyranne X 18v8istribution and
scheduling problems, the travel cost between customerscongested urban environ-
ment is a function of traffic density, which varies over thadiof the day (Malandraki
and Daskin, 1992). Vander Wiel and Sahinidis (1996) intomdla Mixed Integer Linear
Programming (MILP) formulation for the problem, using laration of the quadratic
assignment TDTSP model of Picard and Queyranne (1978) dveldsibby an exchange
heuristic on the underlying multipartite graph. The foratidns of Picard and Queyranne
are the base models for many other approaches, developddf8P, including the
studies of Bianco, Mingozzi and Ricciardelli (1993) and ena (1990). Unlike previous
studies, where time-dependency is addressed in termsvel times, Tas et al. (2016)
focused on minimizing the total route duration with lineadaquadratic service time
functions. They describe the basic properties for certiinses of service time func-
tions, and, based on that, they state conditions under whigting can be beneficial.
Another variant of TSP is referred to a®ving-target TSP, where the problem is to find
the fastest tour while intercepting all moving targets. \tgl Robins and Zelikovsky
(2003) studied moving-target TSP with the assumption tlodies are moving linearly
with a constant velocity. Under such assumption, no waitimg exists in an optimal
tour.

TDTSP models assume nodes of the graph to be stationary.e&sith, the location of
the last visit does not need to be reserved. One common agipi@aveighting the edges
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of a time-dependent graph is to handle the travel cost fonets a step function (Furini,
Persiani and Toth, 2016; Malandraki and Daskin, 1992) déipgron the time of the day
with a small number of time slots. In our model, we deal witlgagicantly larger num-
ber of time slots, compared to studies referred above. Onttier hand, they deal with
minimization of the total travel time. A time indexed formatibn was recently published
by Vu et al. (2019) for solving the Time-Dependent TravejlBalesman Problem with
Time Windows (TD-TSPTW), which is defined on a time-expanaetvork. It is solved
in the dynamic discretization framework, based on FIFOs{Hin First-Out) property
on travel times, with the objective of minimizing the totalt duration including wait-
ing time. In such a case, waiting occurs when the travelleves at a location before
the corresponding time window opens. Vu et al. (2019) tedtenl method on generated
instances using a piecewise linear travel time functionctvhatisfies the FIFO property.

The aim of our research is to develop a mathematical modebaluion approach
for finding an optimal itinerary plan for an environmentahseillance vessel navigating
in a specific area of the sea among traffic lines for measuriegrdnouse gas emissions
from major ships, such as passenger ferries, cargo shipakers. The importance of
the subject is due to the fact that shipping accounts for thwee percent of global green-
house gas emissions. Sulphur emission in European watesewagral times higher than
from all passenger cars in Europe in total, according to Milén (2019). As for other
possible applications, the proposed formulation can béiexpm maritime surveillance
operations (Marlow, Kilby and Mercer, 2007) to detect iliegctivities, for purposes of
airdrop for replenishment of naval vessels (Hewgley andniiakko, 2012), in the resup-
ply of patrolling ships by a supply vessel, or for fish aggtegpdevices (Groba, Sartal
and Vazques, 2015).

In this case study problem there are two objectives, ainamgihimize the total travel
distance and maximize the number of measurements done.rdpeged model finds ef-
ficient alternatives for the number and the sequence of shidgted, as well as the start
times and locations of each measurement process. Addifestares of the real-world
case study create some main differences between the paasgiprreviously proposed
models. In our model, there is no assumption on traffic dgxsstribution or travel time
sequence chart. In a dynamic network, the objective of miiiing travel distance and
travel time are very different. In contrast to the movingy&trmodel in Helvig, Robins
and Zelikovsky (2003), waiting in some time slots can be [iera when minimizing
the distance or fuel consumption. We include the waitingsjimlity such that the time
and location of each ship visited is reserved for possibfmection to the next target. In
distinction from previous models, visiting all ships is watjer possible in the given time
window, due to multiple factors, such as a large working aspaed of the surveillance
vessel, limitation in working hours, and fuel consumpti@onsequently, our problem
turns into a bi-objective model for minimizing the travebtdince and maximizing the
number of nodes visited.

We develop a bi-objective model for optimal routing in a dyri@network with mov-
ing targets, where all targets are not necessarily viskishce, our problem extends the
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moving target travelling salesman problem, in which thel go# minimize total travel
time while visiting all targets. The problem setting is irr case different: giventargets
and a positive integer < n, choose simultaneously a subsefof a targets) from a set
N (of n targets), as well as an optimal itinerary for visiting aligets in the subseA.
Thus, we define our problem as the following two-level opziation problem:

min {z2A) [ IA/=a}

wherez(A) is defined as the minimum travel distance in the inner levabiem of a mov-
ing target TSP, defined by the skt We introduce a mathematical programming model
to solve such new extension of TSP for which, to the best okoowledge, there is no
model in the existing literature that can be directly apgilie to solve our case study. Of
course, when we discuss extensions of TSP, appearing itaraglire, unavoidably there
are similarities in various formulations as well.

In the next section, the problem is defined and a MILP modeldp@sed for finding
the efficient frontier of the bi-objective problem. In Secti3 a density measure is in-
troduced for splitting the time horizon, and the proposedieh@s applied on sequential
sub-intervals, each finding a sub-route. The numerical x@ats and discussion on
the performance of the proposed model on real-world datasetpresented in Section
[4. Sectioi b concludes the paper and introduces the dirsdiio further works.

2. Problem description and MILP formulation

The optimization problem addressed in this paper arises fareal logistic problem
of finding an optimal routing for a vessel measuring greeskogas emissions from
ships in a specific area of the sea, referred to asmir&ing area. The present model
can be considered as an extension of Picard and Queyrari®&8)(formulation. We
characterize our problem as follows: Consider a variant®® problem with dynamic
nodes; i.e. locations of nodes change over time. The nobgsjsnove along estimated
routes. They are presentin the network only during theietmndow: the window starts
when the ship enters the working area and ends when it lehges¢a. The bi-objective
vector maximization problem is to determine how the sulaede vessel with a given
maximum speed should travel among moving nodes assumingriteoia: (1) traveling
the shortest possible distance, and (2) visiting as mampgsts possible. Unlike in TSP,
all ships need not be visited. An animated illustration eftimderlying dynamic network
and an example of optimal routing can be found in Github (2020

2.1. Mathematical formulation

Let T denote the time horizon, during which the travelling by thevsillance vessel is
done, let indices = 1,...,n refer to ships present in the working area sometime during
T, and leti = O refer to the depot (harbour).

In order to formulate the problem as a combinatorial prohlemdiscretize the time
horizonT into m time slots by time pointg < --- < ty, wherety andty, points refer to
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the beginning and the end @f, respectively, and we assume that the locations of ships
remain unchanged during each time slot. Tinéme slots are of equal length;, hence

to = 0 andty = kw, for k= 1,...m. Henceforth, fok = 1...m, time slotk refers to the
interval [ty_1,t) = [(k— 1)w,kw), and time slok = O denotes the initial time poirtg.
Visiting of a shipi needs a processing tinpg before leaving and visiting the next ship;
for the depoti = 0, let pp = 0. The time slots are chosen short enough not to include
more than one processing, thatis< 2p;, for all i > 0.

Fori=0,1,...,n, a shipi is considered as being present in the working area only
during its time window{t,, ...,t, } C {to,t1,... ,tm. For the depoti = 0, we assume
{tag:---stoy } = {to,...,tm}. Fori >0, Ietvf( € R? be a coordinate vector stating the
location of ship at time slok € {a&;,...,bi}. Given that the locations of ships remain un-
changed during each time slot, we obtain the coordinatesfodm the momentk — 1)w,
which is the beginning moment of time sk].

We define a network flow model over a layered gr&phEach layer corresponds to
a fixed time slok = 0,...,mand consists of nodes defined by coordinate vec{orfs)r
i =0,...,n, that is, the coordinates of ships in thift time slot. If for a shipi, we have
k¢ {a,...,bi}, then ship is not present in time sld& and thus the corresponding node
does not existin laye. Let.#* = {VK|i € {0,...,n}, k€ {a,...,bi}} be the set of nodes
v}< of all ships present at time sl&t We assume tha&;, the depot node, is present in all
layers of¢ andi = 0 is non-moving during the time horizan Therefore, the traveller
can start from and return to the depot at any time to compthetédur. The edges of the
graph connect the nodes of a layer to those of the later layers

Let.o¥ = {(,V}) € #*x 4]l > k} be the set of directed edges connecting nodes
in a pair of layerk andl, with sources in#* and terminals in#"!. Thus,% is a multi-
partite directed graph consisting of the union of all setsarfes #% and their pair-wise
connecting edges ¥ . Because at most one processing is possible in each time slot
the nodes in the same layerdhare not connected. The schematic representation of the

graph¢ is illustrated in Fig[L.

The weight of each edge/}(,v'j) is defined as the Euclidean distance between the co-
ordinates of the nodedf{ = ||V —Vi||. The speed of the vessel is assumed to be limited
by a fixed valuec. Therefore, corresponding to each distadﬁ}‘ethere is a minimum
travel time with the speed which is denoted bg¥ = d¥ /c.

As mentioned before, the resulting problem has two objestiminimizing the travel
distance and maximizing the number of nodes visited duhiegitne horizor. We de-
note the two criteria by anda, respectively. lfu(a,z) is a value function representing

*Ships can exit the working area and come back several timeg)ich case their time window is composed
of disjoint sequences of time slots.

TDifferent ships andj can be in the same Iocation\/zf = v'j; however, we hav& +# |; i.e., the ships can be
at the same locations but not at the same time.
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Figure 1. Representation of graghwith three ships and three time slots

preferences of the decision maker, then the objective isitbdfiandz which maximize
u(a,z). Given thata and —z are subject to maximization, we havel/da > 0 and
du/dz < 0 and the optimal solutiofo, z) is Pareto optimal; i.e., an optimédr, z) is on
the efficient frontier. Given that an estimation fors available, the problem results in
a single objective optimization. In a special case, theevéllunctionu is linear. In this
caseu is a weighted sum scalarization; this amounts to giving edijbctive a weight
and maximizing the weighted aggregation. The case of arlivedae function is demon-
strated in Sectionl4.

For the bi-objective problem, we may determine the efficfeanttier first and let the
decision maker choose the most preferred solution there&idor computing the efficient
frontier, several options exist. First, using a set of lin&due functions, the calculation
is efficient since the value functiar{a, z) is a linear objective function; however, only
the supported Pareto points can be found. Second, usingetbence point method
(Wierzbicki, 1982) employing Chebyshev scalarizatiohtta Pareto points can be de-
tected, but this type of scalarization is computationalrechallenging. More on multi-
objective optimization methods can be found in Miettine®9@).

Observing that the objective (ships visited) has positive integer values, a simple
method, which we use to handle the bi-objective probleng gelal with the objectiver
as an additional constraint. That is, we set a goal for theevafa by considering it as
a constraint, and solve the problem of minimizing the oldject (the distance travelled)
while meeting the goal or. Solving such problems far = 1,2, 3,... yields the effi-
cient frontiefl.

The minimization of travel distance employs binary var@xf-', which are equal to
1if nodev'j is visited immediately after nodé,‘ and 0 otherwise. Formally, define the

*In practice, finding solutions that involve the inspectidronly a few ships, for instance 1 or 2, may be
unnecessary. Thus, evaluating only a part of the efficiemttier is needed, and the decision maker might set a
threshold level forr, under which the efficient points are of no interest, andetfuee, need not be evaluated.
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domain of binary variables as follows:
x4 € {0,1} Vi, j=0..n(i#j) Vkl=0...mk<]l),

where each binary variabi¢{ is defined only if both nodef andv, are in the working
area. While the latter condition is of course implementeduncomputer code, for no-
tational convenience, in the sequel we suppress such figgsbts forvf( andv'j.

In this notation, the total travel distance is given as folo

- dk' 1
- ZOI]O ()

(I>k) (i#])

We define an integer parameteto indicate the number of visits. The Pareto frontier
could then be generated in terms ofersus parameter by varying it over the set
{1,...,n}. Givena, the goal constraint is formulated as follows:

ZO i= ;J lxIJ - (2)

(I>k)  (i#]))

Initially, the flow starts from depot nod% at the time slok > 0. If the decision is
made to move to somt% (I >k, j#0), thenxo'j = 1. At the time slommthe surveillance
vessel is supposed to be back to the depot, so the timersistnot included in the
summation. Therefore, the following constraint ensuresty one exit from depot node
and the first visit after that:

m— n
KI

Xoj = 3
kZ 2
(k<
If ship j > 0 is visited in the time slof, 0 < | < m, then the flow should enter the node
v, from some nodef with i  j at an earlier time sldt < |, and exit the nod#, to some
nodevr with i # j at a later time slok > |. So, initialized by the constrairftl(3), one unit

of flow propagates throughout the nodésandv'j in each intermediate step, which is
ensured by the following balance constraints (flow congemg

-1 n m n
K Ik ;
X = Xii Vi=1l.n VI=1.m-1 (4)
2 2T 2 2
(i#)) (i#))

The flow conservation constrairiil (4) maintains the cononeatf time slots and elimi-
nates route breaks at the time dloFinally, for somé > 0 andk < m, after visiting ship
i at the time slok the flow is forced to turn back to depot noggat some time slat > k.
This is achieved using the following constraint:

Z lem = (5)

I>k
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The constraintd {3)E(5) are based on the classical forionlat TSP, which is modified

for the dynamic network. However, we observe that consti@his in fact redundant,
because it is implied by{3) andl(4). The single equatidn (Bspmably does not harm
optimization, or it may even speed up computation. Noteshbttour elimination results
from| > k for all x,"lI so that no node¥ can be re-visited. To see this, assume that a sub-

tour starts at some noddé, passes a sequence of noejdjs} with | > k and returns from
some node/'j to the starting nodeX; but thenk > I, which is a contradiction. Hence, a

sub-tour is not possible. Thuks> k implies that the vessel will not visit nodé more
than once, but we also need to guarantee that each sHpwill not be revisited at some
later timel > k, by the following inequality:

m n
K :
X5 <1 Vi=1..n (6)
|,g:1 j;) :
(I>k) (i#))

By the set of constraintg](2]3(6), we start from the depait @i sequence af nodes
along the route{ (v, v,)|x = 1} and return back to the depot. So, for each fixed value

of a in (2), a Hamiltonian circuii{\}(‘)o, ill, ... ,vikg} can be generated.

To create a feasible schedule, we need to force visiting padbvk within the time
slotk. Firstly, if a visit occurs within the time sldt, then the associated start time of
processingx should fall into the same time slot, and as a result satiséyftfiowing
constraint:

tot+wk—1) <s <tp+wk vk=1..m. (7

Fork =0, sp =t is the time of starting fron\vg at the beginning of the horizoh.
Recall that parametev is the length of the time slots; i.av,=t, —tx_1, fork=1,....m,
determining the scale of granularity for time discretiaati Smaller value fow gives
more accurate locations for the nodésbut a larger size of the network in return. So,
there is a trade-off between the time complexity and acguoéthe location. Secondly,
we need to reserve enough time for processing and traveditite next ship for a visit.
This is assured by the following scheduling constraint:

=}

s+ Y (P < vklI=0.mk<l). (8)
0
)

i,
(i]
To further clarify what variablg represents, if a ship is visited in time slothens,
is the time stage of starting the measurement (servingjmiite time slok. Under our
assumptions, at most one ship can be served in a single toindfsho ship is served in
time slotk, thens, may be any time stage in time sktsatisfying[¥). The binary vari-
ablesxikjI indicate which ship (if any) is served in time slqti.e.,x,!‘j' =1 (for some ship
j and time slot > k) implies that ship is served in time slot. Additionally, constraint
(@) builds the link between shipsind j, and starting times, ands . Consequently, there
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is no need to include the ship index in starting tinsgsNote that optimal waiting time
at nodev'j is implied by the slack in the inequalitlyl(8).

To interpret the waiting time, assume nod‘eis visited first, followed by visiting
nodev. thereafter, and the vessel can reach Iocatgowith constant speedbefore the
beginning of time slot; i.e., before time stag@ — 1)w.

The solution of the MILP mode[{1)E(8) gives the shortesthpfatr processingx
ships, as well as the start times of processing each ship ivea ime horizonT. We
refer to [1)-I(8) as the Bi-objective Dynamic TSP (BDTSP) elod

In TDTSP a function of time is used for calculating the travel time among nodes,
but the nodes are stationary and thus a small number of tiotg isl sufficient to plan
for the whole day (for example morning and evening rush ham lighter traffic in
mid-day). Unlike in TDTSP, due to the moving targets, the banof time slotsnin the
above model is relatively large and the size of our model grquadratically with the
number of time slots. More precisely, it contain§i@? + (1.5 -+ n)m- 3 constraints. An
upper bound for the number of binary variables s8n?. The exact number depends
on the length of the time window for each ship in terms of theetislots. For different
values ofa, the model returns the Pareto optimal solutions for the leralBDTSP. It
can be solved by standard MIP solvers, however, the huge eushbinary variables and
constraints make the problem intractable when based on-kirg real-world datasets.
In the next section, a method is proposed, which returns eamanal (near-efficient)
solution within a significantly lower execution time comedto that of the exact method.

3. Solution methods

Standard software may be directly applied for solving BD;T&®ined by[(lL)-£(8); how-
ever, in real-world cases the number of ships and time ot to be prohibitively large.
Next, to deal with such curse of dimensionality, we constder rather straightforward
but valuable options: first, reducing the number of binamjaldes by preprocessing, and
second, employing heuristics for splitting the time honiZointo consecutive subinter-
vals and finding for the sub-intervals the inter-linked @ntoutes, which jointly form

a Hamiltonian circuit oveiT. The novelty of the splitting heuristic is to introduce a
measure of traffic density to be employed for time horizoittapd.

Preprocessing

For each ship, each nodevr of the graph on the layer of time slétis connected to
all other nodes/ of shipsj # i on all later layers of time slots> k. However, not
all of these links are feasible in terms of actual travellivith the limited speed of the
surveillance vessel. As defined earlier, given the distaf{cieom nodevt to Vi, the time

to travel between the two nodes with the constant speed = di /c. Given the length
w of a single time slot, the binary variable valxﬁ; =1, indicating travel from nodtﬁ
to v'j, cannot occur iﬁl‘j' >w—p;i+w(l —K); i.e., even if the processing of shigtarts at
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the beginning of time sldt, the arrival time in the Iocatiovij is beyond the time sldt In

such instances, the ed¢é’, ) and the binary variable are omitted from the model.
In practice, a large fraction - say about one half - of the hyinariables may be omitted.

The splitting approach

One simple heuristic is to split the time horizdrinto several sub-intervals and run the
model on each sub-interval to construct a part of the routkimvthe entire horizoi.
We consider heuristics for choosing such splitting shorthg a result of splittingQ
sub-intervals are created, and we solve BDTSP separatedacm sub-intervalg, for
g=1,2,...,Q. For the first sub-intervaly, vy is the depot node to start with, and for
the last sub-intervalg, the flow is forced to turn back to the depot noge For each
sub-intervallgq with g < Q the flow is forced to end at some nodjefor j # 0 such that
time slotl is in Tq. Since the route over a sub-interval will be connected teetitkof the
route generated for the preceding sub-interval, for altistdrvalsTg with g > 1 the flow
begins in the location of terminal node of the preceding isierval T,—_1, and the time
slot when service is completed for that terminal node. Thelss imply minor modifica-
tions in the depot node conditioris (3) ahfl (5). Also the serebmpletion time from the
preceding sub-interval,_1 determines the start time il (8). For brevity, we omit furthe
discussion on such straightforward reformulations.

For eachn, after solving BDTSP on sub-interva, all shipsi > 0 visited duringTq
will be removed from the the original setinghips so that they are not visited again in the
subsequent sub-intervals. Lgf denote the number of remaining ships in sub-interval
Tqg, i.e., ships present in the work area sometime dufigdout not visited before the
beginning ofTq. After solving BDTSP on all sub-intervalg, the sum of travel distances
and total number of ships visited are calculated yieldingar+efficient solutior{a, z)
for the bi-objective problem.

For each sub-intervay, for choosing the number € {1,2,...,nq} in (@), obviously
a number of alternative strategies may be employed. Howexerestrict our discussion
below in a strategy aiming to find a near-efficient solutiorttom entire horizom such
that the total number of ships visited is possibly large. sTikijustified from the per-
spective of emissions control needs. Such strategy is &lslesl in the computational
comparisons reported in Sectigh 4.

Time splitting

Splitting of the time horizom will remove links between nodes that fall into distinct
sub-intervals. In general, the splitting approach leadsuto-optimality over the entire
horizonT. Therefore, we wish to detect those links, which have lowncleaof being a
part of the global optimal solution. Based on the datasgtgntees, we try to find good
split points in the sense that optimization over sub-ird&rwould only mildly violate
the global optimality, and yet it would help reducing the géicomplexity considerably.
For this aim, we define a criterio#’ (k) for measuring the sparsity of ship distribution in
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the working area at each time slotWe call it the sparsity function, defined as follows:

S0 = g > df (©)
(i)

wherer(K) is the number of ships present in the work area in the timeksldn fact,
(k) is proportional to the average pair-wise distances of ghipsent in the time sldt
Intuition suggests that the extreme values of the spasitgtfon are relevant to choosing
good split points. When the function value is maximal, thpsimay be concentrated
in a small area. This would minimize excessive travel disteof the surveillance vessel
between the end node of the previous sub-interval and thtingtaode of the next sub-
interval. On the other hand, when the split point is seleatetie minimum value of the
sparsity function, more ship movements are concentratgddrthe sub-intervals, thus
the optimal edge will not probably be a link to a faraway fettime slot. This could give
more room for optimizing corresponding optimal routes. dwer, these are not general
rules as the location of best split point might depend onratharacteristics of the traffic
pattern during one day. For example, if a large number ofsshiipive in the next split, we
make this unseen by cutting the link to those ships. To discthe best candidate for a
split point, we experiment with varying degree of sparsiyiging between the extreme
points of the sparsity functiofl](9). Results are discusseskiction 4.

Finding a near-efficient route visiting many ships

Again, as a result of splitting, assur@esub-intervaldly, forq=1,2,...,Q, are created.
We solve the routing problems one by one for sub-interfg/sand letng denote the
number of ships presentin sub-inter¥glafter removing those already visited befdge
When the model ol is solved, the value af is initially fixed to ng, and this maximum
value is assigned to the equati@h (2). In case no feasihl¢isolis found, the value af

is reduced by one in the next trial. Such iterations contimui an optimal solution is
found for the BDTSP on sub-interv@d. The next sub-interval starts after the processing
ends at the last visit ifi;. Hence, a continuous route is generated after optimalisakit
are found for all sub-intervals. Finally, the total travédtdncez and the total number of
ships visitedo are calculated over the entire horizdn

4. Computational results

The objectives and outline of this section are as followgeAflescribing the empirical
setting, we show illustrative examples of Pareto solutidepict an efficient frontier, and
demonstrate computation of some efficient points. The dhagective of this section is
to compare the heuristics against exact solution in terneswifputing time and accuracy
of the heuristics (relative distance from the efficient fier).

For the exact MILP model and for the splitting approach wethseCPLEX 11.2.1
solver on an Intel(R) Core i7 6500U @ 2.5GHz with 12GB of RAM \Wndows 64
bit operating system. The MIP relative gap tolerance is ®€t.®1 with other default
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Figure 2. Pareto optima faluly 5 dataset with 29 ships present in the working area
during T=[8:10,14:30] UTC+3. Circles show the real locas®f ships in the working
area at different time slots (nodes of the graph). Black $hews the optimal routex

is the goal for the number of visits arzds the corresponding minimum travel distance
(km)

settings for the solver in all experiments. The time limisé& to 4 hours for CPLEX on
the complete time horizon (to find an optimal solution witgimen tolerances without
splitting) and to 10 minutes for sub-intervals in the spigtapproach.

The experiments are done on seven real-world data sets fichwS (Automatic
Identification System) data of all ships navigating in théf@fiFinland are collected via
open interface of the Finnish transport infrastructurenag€Vaylavirasto, 2019). Based
on the real locations of ships, the geographic coordinateprdicted for every minute
over 11 hours per day for one week in July 2018. The predictiodel of Virjonen et al.
(2018) is used for location estimation. The length of tinmssis set tov = 5 minutes
(m= 132 time slots for one day). The processing tiphe=- 3 minutes for all shipsand
speed limit of 25 knots (46.3 km/h) for the surveillance etase used in all experiments.
We do not restrict the network to any distribution or traffendity assumption.

As an illustrative exampleluly 5 dataset is chosen with= 29 ships present during
the time horizon T=[8:10,14:30] equivalentmo= 76 time slots. Two Pareto solutions
are depicted in Fid.]2 and the Pareto frontier(farz) is plotted in Fig[B. As expected,
the minimum distance as a function of the number of measuremeants increasing.
However, some of the efficient points are not supported dumtation of convexity. We
use equality in constrairil(2) to get all Pareto points idirlg the non-supported points.

In order to study the performance of the splitting approaehcarry out two sets of
experiments from small to moderate scale problems with 438mtime slotam. The
Pareto solutions are computed using the exact method fonélxénum possibler values
as well as for some smaller values used for the comparisahsheé splitting approach.
Finding the maximum possible for the exact MILP model is done by iteratively solv-
ing the model for different values af; this is a highly time consuming task for large
problems, since long execution time is also needed for eachprove infeasibility. For
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Figure 3. Pareto frontier faluly 5 dataset with 29 ships present during T=[8:10,14:30]
UTC+3

the comparisons, we also report solutions for each dataietifferent scenarios using
the splitting approach, introduced at the end of Se¢florr 3ifiding solutions in case of
largea values.

Based on the exact model, solved by CPLEX, for the small andierate scale prob-
lems, each with seven datasets of July, Tables Tand 2 shaierffsolutions; the total
distance (kmk travelled, and the number of measurementsrhe Nodes column indi-
cates the number of nodgsyco,... m X in the generated grapfargetsis the number

n of ships present in the working area during the chosen timmedw; Time is the solver
CPU time in seconds. Note that within the time horizon, ita$ possible to visit alh
ships; i.e., we have < nin all cases.

For the splitting approach, based on the sparsity funcft), we adopt three sce-
narios for comparison to identify good candidates for gptiints. The scenarios are
defined forQ = 2, splitting the time horizoil into two sub-intervals. To avoid too short
or too long sub-intervals, some lower and upper lihasdu are chosen for split points
k as follows: the limits for small problems are setlte- 19 andu = 31, and for mod-
erate scale problemste= 30 andu = 60. The three splitting scenarios are the following:

Scenario 1. Split pointk maximizes¥ (k) in the range of <k <,
Scenario 2. Split pointk minimizes.” (k) in the range of <k < u,
Scenario 3. Split pointk is given by the mid-poink = (I +u)/2.

Scenario 3 serves as a benchmark for verifying possibly enhancedygoébolutions
of the Scenarios 1 and 2, which are based on the extremaf As an example, Fid.14
shows the fluctuations in the number of shigls) present in time slok and the sparsity
function. (k) for July 5 dataset over the time horizon T=[8:10,14:30].
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Table 1. Efficient solutions for seven datasets of July 2088 with 43 time slots (small
scale problems)

Dataset | Nodes Targets | a z(km) | Time(s)
July 2 289 19 15 76.9 2.3
14 65.9 1.9
13 55.9 1.7
12 50.4 2.6

July 3 421 27 20 9838 9.7
19 80.6 6.1
July 4 271 19 14 746 2.4
July 5 340 22 19 1071 10.3
18 87.7 9.4
July 6 192 21 9 56.0 0.7
July 7 437 25 19 107.1 2616

18 73.9 268
17 684 52.6
16  60.0 6.2
July 8 360 28 16 93.8 1110
15  67.7 8.8
14  58.9 51
13 544 5.8

Table 2. Efficient solutions for seven datasets of July 2@L& with 86 time slots
(moderate scale problems)

Dataset | Nodes Targets | a z(km) | Time(s)
July 2 507 25 24 1394 15.2
23 1041 135
22 922 12.6

July 3 775 44 35 174.1| 11865
July 4 500 30 25 180.7 359
24  88.8 5.42
July 5 725 38 34 1504 1382
33 1355| 4211
July 6 619 33 25 159.0 2359
24 1294 1280
July 7 683 35 31 156.9 3020

30 133.9 2747
29 1222 2543
July 8 748 45 33 146.8 6489
32 128.0 2495
31 1127 1364
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Figure 4. Characteristics of July 5 dataset for 29 presepssiuring T=[8:10,14:30]
UTC+3 (m= 76 time slots). The horizontal axis shows the time slotsThe upper
diagram is the value o#”(k). The lower diagram is the number of shig&) present in
each time slok

Computational results for the three splitting scenariessiiown in TablE]3 for small
problems and in Tablel 4 for moderate scale problems. Givetihe Speed-up factor
is defined as the CPU time taken by CPLEX to solve the exact hfodermnTime in
Tabled1-P) divided by the time taken by the splitting apphoaAccording to the re-
sults, the splitting approach finds valuesoofery near to the maximum levels reported
in Tabledl anfl2. The decrease in computational time is )gjghificant with respect
to the time required for solving the exact problem (Speed-up columns in TableE]3
and[4). Furthermore, in general, the splitting approachueatly returns near-efficient
distancez; see columnp = (z—z*)/z" in Tabled8 anfll4, showing the relative deviation
(%) of distancez from the exact minimum distan@®. Results obtained on larger scale
problems of Tabl€l4 show in most cases the practicality afguthie splitting approach
in terms of computing time for finding a near-maximuamin addition to a near-efficient
distance valueg. The largest problem solved among these experiments, rimstef the
number of binary variables, is relatedddy 3 dataset, using 86 time slots with 286,819
binary variables. As can be seen in TdbleSdenario 2 returns a near-optimal solution
while reducing the solution time from 3 hours and 18 minute® minutes, thus achiev-
ing the speed-up factor of 99. Similarly, féuly 4, bothScenario 1 and 2 found in few
seconds a near-efficient solution with 1 to 2 % relative déwia The results of Tablg 3
and Tabld ¥ provide us with a perspective for computatiopaéd-up in case of larger
sets of test data. Thus, extra computations may not yielé @aue to our results. Fur-
thermore, for our practical purpose, the small to modereagesexamples are the case,
whose speed-up level is sufficient.
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Table 3. Three split scenarios for seven datasets of July2®-B3, with 43 time slots
(small scale problemsy = (z—z")/z" (%) is the relative distance from the efficient
frontier

Scenario 1 Scenario 2 Scenario 3
Dataset | a p (%) Speed-| a p (%) Speed-| a p (%) Speed-
up up up

July 2 13 50 1.0 12 47 2.2 12 87 2.2
July 3 19 12 1.7 19 15 1.7 6 6 1.1
July 4 14 1 2.7 14 2 3.4 14 16 3.4
July 5 19 0 2.3 18 19 5.2 18 1 5.2
July 6 9 9 1.4 9 0 1.4 9 6 1.7
July7 | 18 1 39.9 16 33 2.8 18 31 29.1
July 8 15 22 4.9 13 51 3.4 14 16 3.4

Average| 153 135 7.7 | 144 240 29 |150 304 66

Regarding the good candidate for a split point, let first @ersan aggregate compar-
ison based on each criterion separately: the average(ibfe relative distance from the
efficient frontier) and the average af(the number of ships visited). The average values
are shown in the last rows of Tablels 3 4dd 4. Results showSteatrio 1 dominates
Scenarios 2-3 in small examples, but not in moderate scales examftesario 2 has
less relative distance from the optimum with the same valwésdged nodes on average.
Therefore, we cannot rank any of the Scenarios over the otiesed on the separate
comparisons for individual objectives.

Taking into account both objectiveanda in a pairwise comparison, it is less clear
which among the three solutions is most qualified. By the tlution quality we refer
to a characteristic, which indicates the answer to the fiafig question:ls the greater
number of visits we achieve in one solution worth the amount of increase in travel dis-
tance compared with the other solution? As an example, we considduly 8 dataset in
Table[3, where two solution&,z), (15,82.4) and (13,82.1), are obtained by the first
two scenarios. Although the former does not dominate ther|ahe solution oEcenario
1 is likely to be preferable, since by a relatively small groent in the distance two
additional measurements inare possible. Non-dominated solutiBrese found by dif-
ferent Scenarios for each dataset. Among the solutions shown in TdGles $latite4
non-dominant solutions in both tables are indicated in faaiel. In the following, based
on a unary indicator within a dataset, we would like to find which scenario returns
the most qualified solutions among all.

In general, we need a solution quality indicator, a valuecfiom, to identify the

8A non-dominated solution here refers to an efficient poirthimset of three feasible solutions for a dataset
given in Table§B and 4, not in the set of all feasible solgiohthe bi-objective problem.
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Table 4. Three split scenarios for seven datasets of July2®-B3, with 86 time slots
(moderate scale problemg) = (z— z")/z" (%) is the relative distance from the efficient
frontier

Scenario 1 Scenario 2 Scenario 3
Dataset | o p (%) Speed-| a p (%) Speed-| a p (%)  Speed-
up up up

July2 | 23 7 4.2 22 6 5.2 22 12 6.6
July3 | 35 15 188.3| 35 2 99.6 | 35 5 192.0
July4 | 25 1 748 | 24 2 21 24 8 2.2
July5 | 33 17 68.9 | 33 9 170.5 | 33 16 8.7
July6 | 24 9 55.7 | 25 14 921 | 24 10 224.6
July 7 | 29 31 279.5| 29 2 199 | 30 19 4.6
July8 | 31 18 241 | 32 34 4.1 32 31 10.8

Average | 28.6 14.0 99.3 | 286 9.9 56.2 [ 28.6 14.4 64.2

preferred splitting scenario, to be found among the nonidatad cases. Various met-
rics have been proposed for comparing the quality of Pamdtdisns of multi-objective
optimization problems; for a review on quality assessmeeitrics of Pareto points we
refer the reader to Riquelme, Liicken and Baran (2015) atzteZ, Knowles and Thiele
(2008). The metrics which we apply for scenario comparisesna normalized lin-
ear scalarization (equivalent to a linear value functiointhe two objectives in the bi-
objective problem. This measure employs reference pomts, Zrax) and(Amax, Zmin)
whereain andzyax (defining the nadir point) are the worst values in the datasetach
objective, andmax andzyin (defining the ideal point) are the best values. The solution
quality indicatorly is defined as follows:

a — Opnin Zmax — Z
Omax — Omin  Zmax — Zmin
The indicatorly is an equally weighted sum of distances to the nadir poirgllef/

each objective scaled by the difference of ideal and naditpevels. In equatior (10),

in case ofoax = amin for two given reference points, we simply set the first termadq

to zero. Similarly, ifzmax = zmin, We set the second term equal to zero. Fidure 5 is a
schematic representation of Pareto optimal (solid line) tawo nearly efficient (dashed
lines) frontiers, defining the two reference points. In mapglications of rational choice
theory, a value function is a useful way of modelling prefexes of the DM; however, the
equal weighting of the two objectives in the linear valuediion Iy does not necessarily
represent preferences of the DM; the weighting coefficiemtsld need to be measured.

In(a,2) =

(10)

In distinction from what is common in value function apptioas, here for com-
paring the solutions obtained by splittitsgenarios 1-3, we have to define the solution
quality indicator functiony separately for each data set. Talfles 5[and 6 show the values
of Iy for each dataset in small and moderate scale cases. Theabestof the three
scenarios in each dataset is shown in boldface (zeros inatilest are computational
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Figure 5. Schematic representation of an optimal (solid)liand two approximation
(dashed lines) of Pareto front along with the referencetpoihe coordinates are the
two objectives;a is the number of ships visited arzds the total travel distance (km).
The point(amax, Zmin) is the ideal utopia point of the bi-criteria problem afghin, Zmax)

is the nadir point

zeros). In a given dataset, a scenario is best if it dominae®other two. Based on
indicatorsly, it is evident from the results that choosing the extremacdis split points
(Scenarios 1 and 2) provides better chance of improving the quality efgblution than
using the naive splittingScenario 3). Among the cases in Tablek 5 ddd 6, the indicator
In ranksScenario 1 as the winner more frequently th&enarios 2 and 3. Therefore,
conforming with intuition, the time slots with large aveeadistances among ships are
good candidates for split points.

Table 5. Values of indicatolls (a, z) for three scenarios on small scale problems

Dataset | (max, Zmin) (Amin, Zmax) Scenariol | Scenario2 | Scenario 3
July2 | (15, 50.4) (12,94.2) 0.57 0.45 0.00
July 3~ | (20, 80.6) (19, 104.3) 0.59 0.50 1.00
July 4 (14, 74.6) (14, 86.4) 0.95 0.89 0.00
July5 | (19, 87.7) (18,107.1) 1.01 0.13 0.97
July6 | (9,56.0) (9, 60.9) 0.00 1.00 0.33
July 7 (29, 60.0) (16, 107.1) 1.36 0.58 0.89
July 8 (16, 54.4) (13, 98.1) 1.03 0.36 0.34
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Table 6. Values of indicatoills (a, z) for three scenarios on moderate scale problems.

Dataset (Amaxs Zmin) (Amin, Zmax) Scenariol | Scenario2 | Scenario 3
July 2 (24, 92.19) (22, 139.43) 1.10 0.89 0.77
July 3 (35, 174.06) (35, 200.1) 0.00 0.90 0.67
July 4 (25, 88.80) (24, 182.7) 1.00 0.98 0.93
July 5 (34, 135.50) (33, 158.1) 0.00 0.44 0.04
July 6 (25, 129.42) (24, 180.8) 0.78 1.00 0.74
July 7 (31, 122.16) (29, 160.5) 0.00 0.93 0.54
July 8 (33, 112.712) (31, 172.0) 0.65 0.50 0.57

5. Conclusion and further research

In this paper, we consider optimal routing of a surveillanessel measuring greenhouse
gas emissions of large ships in the Baltic sea. We develogobjbitive MILP model
for finding a Hamiltonian circuit in a dynamic network formlegllocations of ships over
time, maximizing the number of measurement jobs to be doden@nimizing the to-
tal travel distance of the vessel. As an output, a set of Bamgtimal solutions can be
produced. Standard optimization software may be used fopcoing the efficient fron-
tier; however, cases in practice tend to lead to prohibitiiazge problems. To deal with
the curse of dimensionality, we suggest the model to be ctatipnally tackled with a
time horizon splitting approach employing a sparsity fiorcto determine the splitting
points. Thereby, near-efficient values for the number ofsaeement visits to ships and
for the total travel distance of the vessel can be obtainbd.decrease in computational
time by using the splitting approach is highly significavee for the moderate scale test
cases. For moderate size problems the solver executiorfriiageently decreases from
hours to minutes. The characteristics of a good candidatspld point are investigated
by introducing a traffic sparsity function and examining $ipét points based on extrema
of the function versus naive splitting serving as a benckmaAccording to the results,
time slots corresponding to most sparse traffic in the nd¢vaoe good candidates for
split points; an observation, which is in harmony with ititan.

As already noted, for large scale problems, exact solutinag not be available.
Even if the problem is solvable, for practical purposes it tzke too long to determine
the solution. However, based on our results, using thetisggliapproach we can expect
fast solutions, which are of high enough quality relativetie efficient frontier. Our
experiments have been performed on real historical daseaset evidence confirms that
the method can be efficiently used in practice for maritimdirgy management.

Further research will be directed at testing the model faresceal situations in mar-
itime logistics and incorporating the model into a fully @abmous logistics navigation
system. Further work might also consist in studying whetherpresent results can be
improved by splitting the time horizon based on other fezgwof the traffic pattern, such
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as clusters of ships instead of the sparsity function useel lenatural alternative as a
commonly used heuristic for this class of problems could gerzetic algorithm. Deal-
ing with uncertainty in the underlying graph and optimalting under such uncertainty
is another subject for the future. This also leads to extenteuristics to routing and
scheduling under uncertainty.
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