Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the AUV path planning effectively and successfully in a 3D underwater environment.
Czasopismo
Rocznik
Tom
Strony
33--42
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
autor
- Qingdao Special Equipment Inspection Research Institute, Qingdao, China
autor
- College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
autor
- College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
Bibliografia
- 1. T. Yan, Z. Xu, S. X. Yang, and S. A. Gadsden, “Formation Control of Multiple Autonomous Underwater Vehicles: a review,” Intelligence & Robotics, vol. 3, no. 1, 2023, doi: 10.20517/ir.2023.01.
- 2. H. Choukri and L. Z. Qidan, “Path Following Control of Fully Actuated Autonomous Underwater Vehicle Based on LADRC,” Polish Maritime Research, vol. 25, no. 4, 2018, doi: 10.2478/pomr-2018-0130.
- 3. W. Yu, K. H. Low, and L. Chen, “Cooperative Path Planning for Heterogeneous Unmanned Vehicles in a Searchand-Track Mission Aiming at an Underwater Target,” IEEE Trans. Veh. Technol., vol. 99, 2020, doi:10.1109/ TVT.2020.2991983.
- 4. L. Rowinski and M. Kaczmarczyk, “Evaluation of Effectiveness of Water-jet Propulsor for a Small Underwater Vehicle,” Polish Maritime Research, vol. 28, no. 4, 2022, doi: 10.2478/pomr-2021-0047.
- 5. S. Wang, H. Zhang, S. Baldi, and R. Zhong, “Leaderless Consensus of Heterogeneous Multiple Euler-Lagrange Systems with Unknown Disturbance,” ArXiv, 2021, doi:10.1109/tac.2022.3172594.
- 6. S. Wang and X. Meng, “Adaptive Consensus and Parameter Estimation of Multi-agent Systems with an Uncertain Leader,” IEEE Trans. Autom. Control, vol. 66, 2020, doi:10.1109/tac.2020.3046215.
- 7. S. Wang, H. Zhang, and Z. Chen, “Adaptive Cooperative Tracking and Parameter Estimation of an Uncertain Leader over General Directed Graphs,” IEEE Trans. Autom. Control, 2020, doi:10.1109/tac.2022.3197670.
- 8. Z. Zeng, L. Lian, K. Sammut, F. He, Y. Tang, and A. Lammas, “A Survey on Path Planning for Persistent Autonomy of Autonomous Underwater Vehicles,” Ocean Engineering, vol. 110, 2015, doi:10.1016/j.oceaneng.2015.10.007.
- 9. Y. Ma, Y. Gong, C. Xiao, Y. Gao, and J. Zhang, “Path Planning for Autonomous Underwater Vehicles: An Ant Colony Algorithm Incorporating Alarm Pheromone,” IEEE Trans. Veh. Technol., 2018, doi:10.1109/TVT.2018.2882130.
- 10. B. Hadi, A. Khosravi, and P. Sarhadi, “A Review of the Path Planning and Formation Control for Multiple Autonomous Underwater Vehicles,” Journal of Intelligent & Robotic Systems, vol. 101, no. 4, 2021, doi:10.1007/ s10846-021-01330-4.
- 11. L. Song, H. Chen, W. Xiong, Z. Dong, P. Mao, Z. Xiang, and K. Hu, “Method of Emergency Collision Avoidance for Unmanned Surface Vehicle (USV) Based on Motion Ability Database,” Polish Maritime Research, vol. 26, no. 2, 2019, doi: 10.2478/pomr-2019-0025.
- 12. N. Lefebvre, I. Schjølberg, and I. Utne, “Integration of Risk in Hierarchical Path Planning of Underwater Vehicles,” IFAC PapersOnLine, vol. 49, no. 23, 2016, doi:10.1016/j. ifacol.2016.10.347.
- 13. Z. Zeng, K. Sammut, L. Lian, F. He, A. Lammas, and Y. Tang, “A Comparison of Optimization Techniques for AUV Path Planning in Environments with Ocean Currents,” Robotics and Autonomous Systems, vol. 82, 2016, doi: 10.1016/j.robot.2016.03.011.
- 14. H. Niu, Y. Lu, A. Savvaris, and A. Tsourdos, “An EnergyEfficient Path Planning Algorithm for Unmanned Surface Vehicles,” Ocean Engineering, vol. 161, 2018, doi: 10.1016/j. oceaneng.2018.01.025.
- 15. Y. Li, F. Zhang, D. Xu, and J. Dai, “Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning,” Journal of Advanced Transportation, 2017, doi: 10.1155/2017/7816263.
- 16. R. Cui, L. Yang, and W. Yan, “Mutual Information-Based Multi-AUV Path Planning for Scalar Field Sampling Using Multidimensional RRT,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 7, 2017, doi: 10.1109/TSMC.2015.2500027.
- 17. K. Sun and X. Liu, “Path Planning for an Autonomous Underwater Vehicle in a Cluttered Underwater Environment Based on the Heat Method,” International Journal of Applied Mathematics and Computer Science, vol. 31, 2021, doi: 10.34768/amcs-2021-0020.
- 18. R. Song, Y. Liu, and R. Bucknall, “A Multi-Layered Fast Marching Method for Unmanned Surface Vehicle Path Planning in a Time-variant Maritime Environment,” Ocean Engineering, vol. 129, 2017, doi: 10.1016/j. oceaneng.2016.11.009.
- 19. Y. K. Hwang and N. Ahuja, “A Potential Field Approach to Path Planning,” IEEE Trans. Robot. Autom., vol. 8, no. 1, 1992, doi: 10.1109/70.127236.
- 20. S. Saravankumar and T. Asokan, “Multipoint Potential Field Method for Path Planning of Autonomous Underwater Vehicles in 3D Space,” Intelligent Service Robotics, vol. 6, no. 4, 2013, doi: 10.1007/s11370-013-0138-2.
- 21. S. S. Ge and Y. J. Cui, “New Potential Functions for Mobile Robot Path Planning,” IEEE Trans. Robot. Autom., vol. 16, no. 5, 2000, doi:10.1109/70.880813.
- 22. E. Hernandez, M. Carreras, and P. Ridao, “A Comparison of Homotopic Path Planning Algorithms for Robotic Applications,” Robotics & Autonomous Systems, vol. 64, 2015, doi: 10.1016/j.robot.2014.10.021.
- 23. S. Wang, M. Fu, Y. Wang, and L. Zhao, “A Multi-Layered Potential Field Method For Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning With Minimum Energy Consumption,” Polish Maritime Research, vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0015.
- 24. J. Song, C. Hao, and J. Su, “Path Planning for Unmanned Surface Vehicle Based on Predictive Artificial Potential Field,” International Journal of Advanced Robotic Systems, vol. 17, 2020, doi: 10.1177/1729881420918461.
- 25. M. Fu, S. Wang, and Y. Wang, “Multi-Behavior Fusion Based Potential Field Method for Path Planning of Unmanned Surface Vessel,” China Ocean Engineering, vol. 33, no. 5, 2019, doi: 10.1007/s13344-019-0056-y.
- 26. Y. Rasekhipour, A. Khajepour, Shih-Ken Chen, and B. Litkouhi, “A Potential Field-Based Model Predictive Path-Planning Controller for Autonomous Road Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, 2017, doi: 10.1109/ TITS.2016.2604240.
- 27. Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, and C. Hu, “A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network (APFE-RN) Approach,” IEEE Trans. Ind. Electron., vol. 67, no. 2, 2019, doi: 10.1109/ TIE.2019.2898599.
- 28. J. Lee, “Heterogeneous-ants-based Path Planner for Global Path Planning of Mobile Robot Applications,” International Journal of Control Automation & Systems, vol. 15, no. 5, 2017, doi: 10.1007/s12555-016-0443-6.
- 29. Y. Sun, X. Luo, X. Ran, and G. Zhang, “A 2D Optimal Path Planning Algorithm for Autonomous Underwater Vehicle Driving in Unknown Underwater Canyons,” Journal of Marine Science and Engineering, vol. 9, no. 3, 2021, doi: 10.3390/jmse9030252.
- 30. E. Vidal, J. D. Hernández, K. Istenič, and M. Carreras, “Online View Planning for Inspecting Unexplored Underwater Structures,” IEEE Robot. Autom. Lett., vol. 2, no. 3, 2017, doi: 10.1109/LRA.2017.2671415.
- 31. D. Zhu, W. Li, M. Yan, and Simon X. Yang, “The Path Planning of AUV Based on D-S Information Fusion Map Building and Bio-Inspired Neural Network in Unknown Dynamic Environment,” International Journal of Advanced Robotic Systems, vol. 11, no. 3, 2014, doi: 10.5772/56346.
- 32. X. Yao, F. Wang, C. Yuan, J. Wang, and X. Wang, “Path Planning for Autonomous Underwater Vehicles based on Interval Optimization in Uncertain Flow Fields,” Ocean Engineering, vol. 234, 2021, doi: 10.1016/j. oceaneng.2021.108675.
- 33. D. Zhu, H. Huang, and S. X. Yang, “Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace,” IEEE Trans. Cybern., vol. 43, no. 2, 2013, doi: 10.1109/TSMCB.2012.2210212.
- 34. Y. Li, T. Ma, P. Chen, Y. Jiang, R. Wang, and Q. Zhang, “Autonomous Underwater Vehicle Optimal Path Planning Method for Seabed Terrain Matching Navigation,” Ocean Engineering, vol. 133, 2017, doi: 10.1016/j. oceaneng.2017.01.026.
- 35. B. Sun, D. Zhu, and S. X. Yang, “An Optimized Fuzzy Control Algorithm for Three-Dimensional AUV Path Planning,” International Journal of Fuzzy Systems, vol. 20, no. 2, 2018, doi: 10.1007/s40815-017-0403-1.
- 36. H. N. Esfahani and R. Szlapczynski, “Model Predictive Super-Twisting Sliding Mode Control for an Autonomous Surface Vehicle,” Polish Maritime Research, vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0057.
- 37. Z. Dong, Y. Liu, H. Wang, and T. Qin, “Method of cooperative formation control for underactuated USVS based on nonlinear backstepping and cascade system theory,” Polish Maritime Research, vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0014.
- 38. C. Lin, H. Wang, J. Yuan, and M. Fu, “An Online Path Planning Method Based on Hybrid Quantum Ant Colony Optimization for AUV,” International Journal of Robotics & Automation, vol. 106, 2018, doi: 10.2316/ Journal.206.2018.4.206-5337.
- 39. M. Chen and D. Zhu, “Optimal Time-Consuming Path Planning for Autonomous Underwater Vehicles Based on a Dynamic Neural Network Model in Ocean Current Environments,” IEEE Trans. Veh. Technol., vol. 69, no. 12, 2020, doi: 10.1109/TVT.2020.3034628.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eeb55dc0-97a5-44b4-90a4-8908d7749e0d