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ABSTRACT

The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater 
vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector 
synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed 
to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution 
to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To 
offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement 
direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking 
sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the 
AUV path planning effectively and successfully in a 3D underwater environment.
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INTRODUCTION

Autonomous underwater vehicles (AUVs) are used to 
perform various tasks [1], such as measuring ocean parameters 
and monitoring, oceanography surveys, and security and 
acoustic surveillance. The AUVs have lower operating costs 
than those of manned vehicles especially when working 
for a long time underwater [2]-[4]. Three-dimensional (3D) 
path planning is an essential precondition and requirement 
for the intelligence and autonomy of AUVs in underwater 
missions, such as cooperative tracking, flocking, hunting and 
pursuit-evasion [5]-[7]. It is a process in which the AUV finds 
a path from the initial or current position to its destination 
according to some criteria of safety, mobility, and optimality 
[8]-[11]. Specifically, obstacles are inevitable in the complex 
underwater environment. Therefore, obstacle avoidance must 
be considered for the 3D path planning of AUVs.

In recent years, many approaches have been presented 
and used for the AUV path planning problem, which include 
the A* method [12], field D* method [13], Dijkstra’s method 
[14], rapid exploration random tree (RRT) [15][16], the fast 
marching (FM) method [17][18] and artificial potential field 
(APF) [19]. Potential field methods have rapidly gained 
increased popularity in obstacle avoidance applications for 
autonomous vehicles and robots, owing to their elegance 
and mathematical simplicity [20]-[22]. Meanwhile, they 
have some inherent limitations. Perhaps the most often-
mentioned problem with potential field methods (PFMs) is 
the trapping or local minima cases. When the AUV enters 
a dead end (such as a U-shaped obstacle), a trapping situation 
may occur. Besides, the goals not reachable with obstacles 
nearby (GNRON) problem may occur in cases where the 
goal position is quite close to an obstacle [21]. Among them, 
when the AUV approaches the target, it will also near the 
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obstacle. If the repulsive and attractive potentials are defined 
as common forms, the attractive force will be much smaller 
than the repulsive force, and the goal position is not the global 
minimum of the total potential. So, the AUV cannot reach 
its target due to the obstacle nearby. 

For the above issue of APFs, researchers have proposed 
many effective solutions, mainly including two kinds. The 
first method is to improve the potential field function to 
eliminate the local minimum point, and ensure that the 
destination point is the minimum point of the global potential 
field to reduce the probability of local minimum points in 
the potential field [23][24]. The second one is combined with 
the APF method and other methods, so that the autonomous 
vehicle or robot can escape from the local minimum position 
[25]-[27]. The heterogeneous-ants-based path planner was 
proposed as a global path planner to directly find a smoother 
and optimal path [28]. The deep deterministic policy gradient 
algorithm is combined with the APF method to solve the 
safe navigation problem for AUV in the two-dimensional 
(2D) underwater environment [29]. However, to the best 
of our knowledge, the combination methods will increase 
the computational complexity, and affect the real-time 
performance of the APF. 

Moreover, the underwater environment is a complex, 
uncertain, and unstable space. Most of the above studies 
focused on generating valid paths, and ignored the impact 
of other environmental factors (such as current), which is 
unreasonable [30][31]. In particular, the current change has 
a great influence on AUV navigation. Thence, the design of the 
AUV path planning algorithm should consider environmental 
factors. Meanwhile, to reduce the memory requirement and 
speed up the planning process, most of the above-mentioned 
methods in the literature have been tested and applied in a 2D 
environment. But in the complex underwater environment, 
the practical AUV motion needs to follow a 3D route [32]-[34]. 
Compared to the simple 2D path, a 3D route is more practical 
but difficult, since the path has to be generated and modified 
in real time to improve the AUV’s adaptability to complex 
environments. In [31], a biologically inspired neural dynamics 
method based on map planning is proposed for obstacle 
avoidance of an AUV in a 2D non-stationary environment. 
In [35], an optimized fuzzy control algorithm combined with 
particle swarm optimization (PSO) is proposed for AUV path 
planning to generate an optimal 3D path. The disadvantage is 
that it ignores the influence of time-varying ocean currents. 
However, these studies only studied the constant current and 
path planning limits (with limited distance from obstacles) 
applicable to the AUV platform. For 3D AUV navigation, 
time-varying current should be considered.

Inspired by [30]-[35], to solve the 3D path planning 
problem for an AUV in an underwater environment, this 
article proposes an MPF-based velocity synthesis (VS) 
algorithm to plan the non-collision path under the influence 
of time-varying current, as shown in Fig. 1. The underwater 
environment model is constructed through multi-beam FLS. 
The main advantages of this article include:  
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Fig. 1. 3D underwater path planning for AUV

1) Unlike the traditional APF schemes in [20]-[22], the 
proposed MPF method is designed to solve the GNRON 
and U-shaped trap problems. Besides, the attractive 
potential is modified to solve the new problem of rotation 
unreachable (a special case of GNRON and U-shaped trap).

2) Unlike existing path planning methods in [31][35], 
a method that combines MPF with VS is proposed to 
enhance the robustness of the AUV path planner in time-
varying current.

3) In contrast to the methods in [30][31], the proposed 
algorithm is more versatile since the path planning module 
is suitable for a 3D underwater environment.
The organization of this article is as follows. The problem 

statement is presented in Section 2. Section 3 describes the 
proposed MPF-based VS algorithm for 3D underwater path 
planning of the AUV. Section 4 gives the simulations to certify 
the performance of the proposed algorithm. The summary 
and further work are presented in Section 5.

PROBLEM STATEMENT

Consider the mathematical models for an AUV, shown 
in Fig. 2. The simplified kinematic model (four degrees of 
freedom) can be defined as [35]-[37] 

 (1)

where η is the AUV position and orientation state vector 
in the earth-fixed frame. ν = [u w q t]T is the velocity state 
vector in the body-fixed frame. Variables u and w are surge 
and heave velocities. q and r are the pitch velocity and yaw 
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velocity, respectively. x, y, z are the displacement coordinates. 
The variable θ denotes the orientation angle and ψ is the 
heading angle.
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Fig. 2. AUV coordinate systems

As the AUV works in a 3D underwater environment, 
information needs to be gathered from its surroundings by 
a multi-beam forward-looking sonar (FLS) [38]. Fig. 3 shows the 
main parameters of the sensor. The sonar can detect obstacles 
in its vision, calculate the coordinates of the intersection of 
the surface of the obstacle and 240 beam rays, and calculate 
the distance between the sonar head and the intersection.
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AUV moving 
direction

80*3 beams

Fig. 3. The main parameters of multi-beam FLS 

According to the actual situation, the 3D underwater 
environment includes obstacles and timevarying current, 
as shown in Fig. 4. Thus, the APF approach is to establish an 
attractive potential field function (Urep) and repulsive potential 
field function (Uatt) around the goal point and the obstacles, 
respectively. The total potential field function (Utotal) is the 
superposition of the two potential fields, which determines 
the motion for the AUV (shown in Fig. 4). Moreover, the 
motion is considered in 3D space; the initial position of the 
AUV is X = [x, y, z]T; the target position is G = [xgoal, ygoal, zgoal]
T, and the obstacle position is O = [xo, yo , zo]T . The potential 
field forces as follows are three-dimensional forced vectors.
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Fig. 4. 3D underwater path planning problem

In the 3D path, the potential functions for the APF are 
described as follows [30]:

  (2)

  (3)

(4)

where λ1, λ2 (λ>0) are the attractive and repulsive proportional 
gains of the functions. dXG= ||Ggoal – X|| expresses the distance 
between the target and the AUV. ||do|| represents the limit 
distance of the influence of the potential field, and ||dXO|| is the 
shortest distance to the obstacle and the AUV. The distance 
is dependent on Euclidean distances and vector algebra, the 
same as in the 2D environment.

The corresponding force is the negative gradient of 
potential, and the AUV navigates using the force given by

(5)

The traditional APF method cannot guarantee that 
the AUV reaches the target position in many cases. The 
aforementioned literature reports some of the limitations 
of this method [20]-[22]. At the same time, the following 
assumptions are given: 

Assumption 1: Complicated obstacles can be decomposed 
into simplified models, such as cuboids, floating balls, 
U-shaped, and so on. They can be superimposed on each 
other, the main parameters of which are geometric centroid, 
radius and ||do||.
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Assumption 2: The distances of obstacles, targets and 
AUVs refer to the distances of their geometric centroids. 
And their own radii also need to be considered for collision 
avoidance.

Assumption 3: The convergence distance Δd is set as 
0.02 m, and defined as the acceptable distance range from 
the target point coordinates to the AUV position. 

PROPOSED APPROACH

In this section, an MPF-based velocity synthesis approach 
to 3D underwater path planning of an AUV is proposed with 
static obstacles and time-varying current. Here, the MPF is 
used for path planning to guide AUVs to avoid obstacles. 

A. Velocity vector synthesis method
The basic idea of the VS algorithm is to control the 

movement direction of the AUV, offset the influence of the 
current on the AUV navigation, and make the resultant vector 
point to the destination. It is shown in Fig. 5,
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Fig. 5. Algorithm of the velocity vector synthesis 

where L is the vector from the initial position of the AUV 
to the target. The vector Vauv(t) is the moving speed of the 
AUV, and |Vauv(t)| is known. Vc(t) is the velocity of the time-
varying current. α1 represents the angle between Vauv(t) and 
L. α2 is the angle between the positive direction of Vc(t) and 
L, and α3 is the angle between the positive direction of the 
x-axis and Vc(t).

In order to make the resultant velocity vector of the AUV 
velocity and the ocean current velocity point to L, first, the 
vectors Vauv(t) and Vc(t) are decomposed, and the component 
perpendicular to L is denoted as Vauvd(t) and Vcd(t), such that

 (6)

Then, the AUV velocity component is made to offset the 
ocean current velocity component, namely

(7)

B. MPF-based velocity synthesis algorithm 
The MPF-based velocity synthesis algorithm uses the 

goal, obstacle, and AUV positions as features to obtain 
a sequence of objective points that the AUV must attain, 
and gradient information influenced by the attractive and 
repulsive forces to transform a sequence of objective points to 
a path. Hence, the proposal achieves the task of path planning 
generation, to solve the limitations given by the original APF 
in 3D underwater path planning for the AUV, such as the 
GNRON, U-shaped trap and rotation unreachable. Based 
on the improved repulsive potential, the GNRON problem 
is eliminated by adding a coefficient item to the repulsion 
potential field of obstacles. The attractive potential function 
can keep away from a U-shaped trap by a rotation matrix 
F(X). Then, the distance factor function M(X) is considered 
to improve the attractive potential and solve the rotation 
unreachable problem caused by the rotation matrix F(X). The 
pseudo code for the proposed method is shown in Table 1.
Tab. 1. Algorithm of MPF-based velocity synthesis

Input: a means to compute the gradient  at   
Output: multipoint sequence   
1: procedure MPF( ) 
2: i=0 
3: calculation angle   
4: by introducing  and  to improve repulsive potential   
— GNRON 

5: ,  to improve attractive potential 
6:  to further improve attractive potential  — rotation unreachable 
7: combined velocity vector synthesis method — time-varying current 
8: calculate the total potential  
9: if  —target achieved 
10: else i=i+1 

the next position for the AUV 
11: end if  
12: end procedure 

Modified repulsive potential for GNRON 
When the target is within the influence distance of the 

obstacle, the global minimum point in the traditional APF 
method will not be at the target position. This is one of the 
factors that make the target unreachable. Hence, the distance  
||dXG|| is introduced to the repulsive potential as follows: 

 (8)
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In view of the above potential, the repulsive force can be 
expressed as

  
(9)

 
(10)

Here, Urepmax is the maximum repulsive potential. R is the 
radius of the obstacle, which is the maximum distance from 
the centroid to the obstacle. , ,  are the unit vector. 
||din|| is the shortest distance between the obstacle and the 
AUV. a is a positive parameter.

When moving into the interior of the open obstacle, for 
example, the following U-shaped obstacles, the maximum 
repulsive potential is used to ensure obstacle avoidance. The 
new repulsive potential function can ensure that the total 
potential has a global minimum at the goal position. So, the 
AUV can reach the target with the obstacle nearby. 

Modified attractive potential for U-shaped trap
When a local minimum point appears within the U-shaped 

obstacle, the AUV falls into the interior of the U-shaped trap. 
On the one hand, the maximum repulsive potential is used 
to ensure obstacle avoidance. On the other hand, to avoid the 
trap, a rotation matrix F(X) and a strict attenuation function 
B(X) = e((–H(X)

m
)) have been introduced. The new attractive 

potential is defined as follows:

 (11)

Here, θ represents a random angle, and  is defined as below:

 (12)

Among them, B(X) is

 (13)

The attractive force is expressed as follows. It is the negative 
gradient of the attractive field,

 (14)

where sθ, cθ are the sine and cosine functions. m is the decay 
rate. B(X) is a decay function. H(X) is the total force of the 

MPF. When the magnitude of the total force approaches zero, 
the value B(X) will be close to one. And as H(X) grows, B(X) 
will decay rapidly to zero.

If the value B(X) is zero,   and F(X) 

are the identity matrices. Similarly, the direction of the total 
force will not be rotated. When the value of B(X) is one, the 
rotation matrix is as follows:

Based on this, the direction of the total force will rotate  
degrees. After that, the AUV will escape the U-shaped trap. 
However, the rotation matrix will make the AUV rotate 
around the target when approaching the target. Hence, 
the AUV cannot reach the target, which is called rotation 
unreachable (a special case of GNRON and U-shaped trap).  

A  further modified attractive potential for rotation 
unreachable

As noted earlier, the modified attractive potential makes 
the AUV avoid the U-shaped trap problem effectively by 
introducing the rotation matrix. However, it will cause 
rotation unreachable. 

According to (8) and (14), when the AUV approaches the 
target, the total force will gradually decrease. When the total 
force decays to a non-zero value, the situation of rotation 
unreachable will occur. In this situation, the AUV will rotate 
around the target. In order to solve the above problem, 
a distance factor function M(X) is introduced: 

 (15)

The further modified attractive force is

 (16)

As the AUV moves away from the target, M(X) is 
approximately equal to one. When the AUV approaches the 
target, its growth rate is greater than the decay rate of ||dXG||. 
Hence, as the AUV approaches the target, the magnitude 
of the attractive force will increase rapidly. Since F(X) is an 
identity matrix, the attractive force will not rotate. The further 
modified attractive potential can avoid rotation unreachable.

Combining the velocity vector synthesis method (7) 
and MPF (9)(10)(16), the proposed algorithm can realize 
3D underwater path planning with time-varying and static 
obstacles. In summary, both the attractive and repulsive 
potential have been modified, and this overcomes the 
limitation of the traditional APF.



POLISH MARITIME RESEARCH, No 1/202338

SIMULATIONS AND ANALYSIS

Considering that this work aims to achieve 3D underwater 
path planning for an AUV with time-varying current and 
static obstacles, and the MPF-based velocity synthesis method 
is applied to effectively solve the limitations of the APF and 
ocean current, three simulation conditions were carefully 
selected. The starting point was set at X = (0,0,0)T and the 
target point at G = (20,20,15)T. According to Assumptions 
1‒3, the simulation experiments are as follows to accomplish 
comparisons of the proposed method concerning traditional 
APF. Besides, the time-varying ocean current is described 
as follows [39]:

 (17)

 (18)

where 
                 

 is the velocity of the ocean current, and 
the parameters are set as  c = 0.15, k = 1, γ = 0.88, B0 = 0.15  
δ = 0.3, ω0 = 0.4.                                                                                                       

Meanwhile, it is assumed that the AUV is moving 
at a constant speed, and the total force applied to it only 
determines the direction of its motion. Then, if the distance 
from the AUV to the target is less than 0.02 m, it indicates that 
the AUV has reached the target. First, the design parameters 
of the best planning effect are selected by using the APF 
method through simulation results. In the simulation, the 
AUV must not only avoid obstacles but also overcome the 
influence of time-varying current, and the VS algorithm 
was introduced to overcome the influence of the current by 
adjusting the navigation direction of the AUV. Afterward, 
the same parameters for the APF and MPF-based VS are used 
to make comparisons for each situation. In the following 
simulation, the blue circle represents part of the AUV location.

A. Simulation comparison for GNRON 
When the target is close to an obstacle, it will cause the 

GNRON problem in Fig. 6. Both the traditional APF and 
the MPF-based VS method are compared to confirm the 
effectiveness of the improvement. For this test, the APF 
parameters are λ1 = 2, λ2 = 3 , do = 3 , m = 2 , R = 0.5. The 
parameters of the MPF-based VS are λ1 = 2, λ2 = 3, a = 0.5, 
do = 3, m = 2, R = 0.5. There is an obstacle with the coordinate 
of O = (19.5,19.5,14)T. In Fig. 7, the modified repulsive potential 
is adopted. It can be concluded from the above simulation 
that both the potentials can ensure that the AUV reaches 
the target point while avoiding obstacles. But when the AUV 
approaches the target, it will oscillate due to obstacles near the 
target. After the repulsive potential is modified by ||dXG||, it 
rapidly decreases near the target, and the AUV finally reaches 
the target. 

B. Simulation comparison for U-shaped trap
Fig. 8 and Fig. 9 show a U-shaped trap simulation test, 

which is the best-known problematic situation in the 
traditional APF. In this situation, a rotation matrix and a strict 
attenuation function are chosen to improve the attractive 
potential. The APF parameters are λ1 = 0.01, λ2 = 5 , do = 5, 
m = 2, R = 1; the parameters of the MPF-based VS are λ1 = 2, 
λ2 = 3, a = 0.5, do = 3, m =2, R = 1. The obstacle position is  
O = (10,10,7.5)T. Obviously, it will sink into the U-shaped 
trap by the traditional APF, and the maximum repulsive 
potential is used to avoid the collision obstacle in Fig. 8. Fig. 9 
shows the path generated by the proposed method, and the 
AUV reaches the target away from the trap. From the above 
simulation results, it is shown that the proposed MPF-based 
VS method can make the AUV rotate and avoid dropping 
into the U-shaped trap efficiently.  

Fig. 6. Simulation of traditional repulsive potential 

Fig. 7. Simulation of modified repulsive potential
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Fig. 8. Simulation of the traditional APF

Fig. 9. Simulation of the MPF-based VS

C. Simulation comparison for rotation unreachable
When the modified attractive function is introduced, the 

rotation unreachable may be generated, as shown in Fig. 10. 
For this part, the parameters are λ1 = 2.8, λ2 = 2.8, a = 1.5, 
do = 6, m = 2. The obstacle position is as follows: 

, 

Fig. 10 represents the problem of rotation unreachable by 
a rotation matrix F(X). When the AUV approaches the target, 
it starts to rotate around the target. As shown in Fig. 11, under 
the action of the modified repulsive potential and further 
modified attractive potential, the AUV can reach the target 
point while avoiding obstacles.

Fig. 10. Rotation unreachable caused by new attractive function  

Fig. 11. Simulation of the MPF-based VS

In summary, the proposed algorithm has been effectively 
tested for an AUV under time-varying current and different 
static obstacles environments. The theoretical analysis and 
simulation comparison results above prove that 3D underwater 
path planning using the proposed MPF-based VS method can 
get better performance than the traditional APF method. 
Meanwhile, the 3D path planning simulation results of the 
AUV prove that the proposed method can effectively deal 
with the GNRON, U-shaped trap, and rotation unreachable 
problems under a variety of static obstacles environments.

CONCLUSION

In this article, 3D path planning in environments with time-
varying current and static obstacles is studied for an AUV and 
a novel MPF-based velocity synthesis method is proposed. 
This proposed method has a concise mathematical description 
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and algorithm structure, and has solved the problems of the 
traditional APF, such as the GNRON, U-shaped trap, and 
rotation unreachable. To offset the influence of the current, 
the VS method is designed to adjust the moving direction 
of the AUV. Besides, based on the multi-beam FLS model, 
it is suitable for path planning in a complex underwater 
environment. Finally, the simulation results show the good 
performance of this algorithm. For future work, the energy 
consumption will be considered in the path planning of AUVs.
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