PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature efficiency of heat exchangers in air handling units

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to reduce ventilation heat loss and improve energy efficiency of low-energy buildings air-handling units (AHUs) with heat recovery are used. The article presents results of surveys performed in a passive building located in Katowice concerning the temperature efficiency of heat and cold recovery of two selected AHUs, with different heat exchangers. For this purpose the measurement data from the Building Management System (BMS) for the period 1.08.2015-31.07.2016 were used. The first unit was equipped with a rotary heat exchanger. Its average annual temperature efficiency of heat recovery was 47.2% annually. The efficiency of cold recovery amounted 52.9% on average for the warm half year. The second unit had a cross-flow exchanger. The average annual temperature efficiency of heat recovery in this device was 80.1%. The efficiency of cold recovery amounted 57.2% on average for the warm half year. Additional remarks concerning the temperature measurement in analysed units were also given.
Rocznik
Strony
267--272
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
  • Science and Technology Park Euro-Centre, Katowice
Bibliografia
  • 1. Życzyńska A., Cholewa T. (2015). The modifications to the requirements on energy savings and thermal insulation of buildings in Poland in the years 1974-2021. Budownictwo i Architektura, Vol. 14, No. 1, pp. 145-154.
  • 2. Szul T. (2017). The consumption of final energy for heating educational facilities located in rural areas. Journal of Research and Applications in Agricultural Engineering, Vol. 62, No. 1, pp. 171-175.
  • 3. Sikora M., Siwek K. (2018). Energy audit of the residential building. Journal of Mechanical and Energy Engineering, Vol. 2(42), No. 4, pp. 317-328. DOI: 10.30464/jmee.2018.2.4. 317
  • 4. Kostka M., Szulgowska-Zgrzywa M. (2017). Changeover natural and mechanical ventilation system energy consumption in single-family buildings. In: ASEE17, E3S Web of Conferences, Vol. 22, 00086. DOI: 10.1051/e3sconf/20172200086
  • 5. Pietkun-Greber I., Suszanowicz D. (2018). The consequences of the inappropriate use of ventilation systems operating in indoor swimming pool conditions - analysis. In: INFRAEKO 2018, E3S Web of Conferences, Vol. 45, 00064. https://doi.org/10.1051/e3sconf/20184500064
  • 6. Mardiana-Idayua A., Riffat S.B. (2012). Review on heat recovery technologies for building applications. Renewable and Sustainable Energy Reviews, Vol. 16, pp. 1241-1255. DOI: 10.1016/j.rser.2011.09.026
  • 7. Enteria N., Yoshino H., Mochida A. (2013). Review of the advances in open-cycle absorption air-conditioning systems. Renewable and Sustainable Energy Reviews, Vol. 28, pp. 265-289. DOI: 10.1016/j.rser.2013.07.012
  • 8. Cuce P.M., Riffat S. (2015). A comprehensive review of heat recovery systems for building applications. Renewable and Sustainable Energy Reviews, Vol. 47, pp. 665-682. https://doi.org/10.1016/j.rser.2015.03.087
  • 9. Zeng C., Liu S., Shukla A. (2017). A review on the airto-air heat and mass exchanger technologies for building applications. Renewable and Sustainable Energy Reviews, Vol. 75, pp.753-774. https://doi.org/10.1016/j.rser.2016.11.052
  • 10. Kostka M. (2017). Hybrid ventilation in residential buildings - the proposal of research for the Polish climatic conditions. In: EKO-DOK 2017, E3S Web of Conferences, Vol. 17, 00043. DOI: 10.1051/e3sconf/20171700043
  • 11. Fidorów-Kaprawy N., Kostka M., Szulgowska-Zgrzywa M., Piechurski K. (2017). The energy concept of the building as a part of sustainable construction. Architectus, Vol. 49, No. 1, pp. 115-130. DOI: 10.5277/arc170108
  • 12. Determination of the basic requirements necessary to achieve the expected energy standards for residential buildings and the method to verify designs and to check built energy-efficient homes [in Polish], National Fund for Environmental Protection and Water Management Warsaw, 2012.
  • 13. Wysocka N., Michalak P., Grygierczyk S. (2017). Selected aspects of the exploitation of the mechanical air handling units in a low-energy building [in Polish]. Rynek Instalacyjny, Vol. 25, No. 12, pp. 48-51.
  • 14. Michalak, P., Grygierczyk, S. (2015). Heat pumps in the passive office building: first exploitation results [in Polish]. Ciepłownictwo Ogrzewnictwo Wentylacja, Vol. 46, No. 10, pp. 396-398.
  • 15. Michalak P., Grygierczyk S. (2017). Temperature Efficiency of the Heat Recovery in an Air-Handling Unit with a Rotary Heat Exchanger [in Polish]. Ciepłownictwo, Ogrzewnictwo, Wentylacja, Vol. 49, No. 5, pp. 183-187. DOI:0.15199/9.2018.5.4
  • 16. PN-EN 308:2001 (2001). Heat exchangers. Test procedures for establishing the performance of air to air and flue gases heat recovery devices. Polish Committee for Standardization. Warszawa.
  • 17. Asdrubali F., Baldinelli G., Bianchi F., Cornicchia M. (2015). Experimental Performance Analyses of a Heat Recovery System for Mechanical Ventilation in Buildings. Energy Procedia, Vol. 82, pp. 465-471. https://doi.org/10.1016/j.egypro.2015.11.845
  • 18. Borowski M., Jaszczur M., Satoła D., Kleszcz S., Karch M. (2018). An analysis of the innovative exhaust air energy recovery heat exchanger. In: ICCHMT 2018, MATEC Web of Conferences, Vol. 240, 02003. DOI: 10.1051/matecconf/201824002003
  • 19. Regulation of the Minister of Infrastructure of April 12, 2002 on the technical conditions to be met by buildings and their location (Journal of Laws No. 75, item 690), as currently amended.
  • 20. Kosieradzki J. (2009). Heat recovery - possibilities and principles [in Polish]. Rynek Instalacyjny, Vol. 17, No. 3, pp. 55-56.
  • 21. Lipska B., Trzeciakiewicz Z., Ferdyn-Grygierek J., Popiolek Z. (2011). The Improvement of Thermal Comfort and Air Quality in the Historic Assembly Hall of a University. Indoor and Built Environment, Vol. 21, No. 2, pp. 332-347. DOI: 10.1177/1420326X11411244
  • 22. Bareika P., Martinaitis V., Misevičiūtė V. (2012). Ventilation heat recovery using air source heat pump analyze. In: Inżynieria Środowiska - Młodym Okiem, Vol.1, pp. 175-178.
  • 23. Georges L., Skreiberg Ø. (2014). Modeling of the Indoor Thermal Comfort in Passive Houses heated by Wood Stoves. In: 9th International Conference on System Simulation in Buildings, Liege, December 10-12, 2014.
  • 24. Anisimov, S., Jedlikowski, A., Pandelidis, D. (2015). Frost formation in the cross-flow plate heat exchanger for energy recovery. International Journal of Heat and Mass Transfer, Vol. 90, pp. 201-217. DOI: 10.1016/j.ijheatmasstransfer.2015.06.056
  • 25. Skrzycki M., Besler M. (2017). Impact of damper opening time on work of storage matrix regenerative heat exchanger. In: E3S Web of Conferences, Vol. 17, 00082. DOI: 10.1051/e3sconf/20171700082
  • 26. Jaszczur M., Kleszcz S., Borowski M. (2019). Analysis of the anti-icing system used in air handling units with a counterflow heat exchanger. In: E3S Web of Conferences, Energy and Fuels, Vol. 108, 01022. DOI: 10.1051/e3sconf/201910801022
  • 27. Hviid C.A., Svendsen S. (2011). Analytical and experimental analysis of a low-pressure heat exchanger suitable for passive ventilation. Energy and Buildings, Vol. 43, pp. 275-284. DOI: 10.1016/j.enbuild.2010.08.003
  • 28. Pikas E., Thalfeldt M., Kurnitski J., Liias R. (2015). Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings. Energy, Vol. 84, pp. 623-633. DOI: 10.1016/j.energy.2015.03.026
  • 29. Frein A., Muschera M., Scoccia R., Aprile M., Motta M. (2018). Field testing of a novel hybrid solar assisted desiccant evaporative cooling system coupled with a vapour compression heat pump. Applied Thermal Engineering, Vol. 130, pp. 830-846. DOI: 10.1016/j.applthermaleng.2017.10.168
  • 30. Nie J., Yuan S., Fang L., Zhang Q., Li D. (2018). Experimental study on an innovative enthalpy recovery technology based on indirect flash evaporative cooling. Applied Thermal Engineering, Vol. 129, pp. 22-30. DOI: 10.1016/j.applthermaleng.2017.09.139
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eeab2750-b011-49dc-883f-1702c0c55406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.