Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Composite materials based on aluminum alloys are widely used in the automotive, aviation, and shipbuilding industries. The presence of the ceramic reinforcing phase significantly changes the mechanical properties of aluminum alloys. By appropriate selection of the components that make up the composite materials, it is possible to create mechanical properties that are not possible with unreinforced alloys. Structural elements made of these types of materials often require joining in welding processes. This article presents a general description of methods of joining composites based on aluminum alloys reinforced with ceramic particles, which have been divided into three groups: fusion welding method, solid state welding, and different methods. The individual methods highlighted how the presence of a reinforcing phase affects the welding process. Difficulties mainly arise from the disintegration of the ceramic phase by the concentrated heat source during welding processes, the formation of harmful surface products, and the lack of wettability of the ceramic particles through the metal matrix. The joints obtained vary in terms of structure, ceramic particle distribution, and mechanical properties with respect to the values characterizing the native material. From an analysis of the individual methods, it appears that solid-phase methods have the smallest effect on the degradation of ceramic particles, but have limitations in terms of the shape and size of the materials to be joined. In fusion welding methods, the degradation of the reinforcement phase by the concentrate heat source is greatest. To a certain extent, this can be compensated for by the choice of an additive material, which consists of elements that improve the wettability of the reinforcement phase through the metal matrix and form strengthening separations.
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Marine Engineering 2 Willowa St., 71-560 Szczecin, Poland
Bibliografia
- 1. Aghajanian, M.K. Langensiepen, R.A. Rocazella, M.A. Leighton, J.T. & Andersen, C.A. (1993) The effect of particulate loading on the mechanical behavior of Al2O3/ Al Metal Matrix Composites. Journal of Materials Science 28, pp. 6683‒6690.
- 2. Atabaki, M.M. Yazdan, N. & Kavacevic, R. (2016) Partial penetration laser-base welding of aluminium alloy (AA 5083-H32). Optic 127 (16), pp. 6782‒6804, doi: 10.1016/j. ijleo.2016.05.007.
- 3. Bassani, P. Capello, E. Colombo, E. Previtali, D. & Vedani, M. (2007) Effect of process parameters on bead properties of A359/SiC MMC welded by laser. Composites: Part A 38, pp. 1089‒1098, doi:10.1016/J.Compositesa. 2006.04.014.
- 4. Ceschini, L. Boromei, I. Minak, G. Morri, A. & Tarterini, F. (2007) Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite. Composites Science Technology 67 (3–4), pp. 605‒615, doi: 10.1016/J. Compscitech.2006.07.029.
- 5. Chernyshov, G.G. Panichenko, S.A. & Chernyshova, T.A. (2003) Welding of metal composites. Welding International 17 (6), pp. 487‒492, doi: 10.1533/wint.2003.3155.
- 6. Composite Materials Handbook (1999) Volume 4. Metal Matrix Composites. MIL-HDBK-17-4.
- 7. Devletian, J.H. (1987) SiC/Al metal matrix composite welding by capacitor discharge process. Welding Journal 66, pp. 33‒39.
- 8. Eagar, T.W. Baeslack, W.A. & Kapoor, R. (1994) Joining of Advanced Materials. In: M. Flemings, R. Brook, S. Mahajan (eds) Encyclopedia of Advanced Materials. Pergamon Press, Oxford, pp. 1207‒1211.
- 9. Ellis, D. Gittos, M.F. & Threadgill, P.L. (1996) Joining aluminum based metal matrix composites. Materials World 2 (8), pp. 415‒417, doi:10.1179/imr.1996.41.2.41.
- 10. Famodinu, O.H. Stanford, M. Oduoza, C.F. & Zhang, L. (2018) Effect of process parameters on density and porosity of laser melted AlSi10Mg/SiC metal matrix composites. Frontiers of Mechanical Engineering 13, pp. 520‒527, doi:10.1007/s11465-018-0521-y.
- 11. Garcia, R. Lopez, H.V. Kenedy, A.R. & Arias, G. (2007) Welding of Al-359/20%SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA). Jurnal Material Science 42, pp. 7794‒7800, doi:10.1007/ s10853-007-1632-8.
- 12. Gomez De Salazar, J.M. & Barrena, M.I. (2003) Dissimilar fusion welding of AA7020/MMC reinforced with Al2O3 particles and mechanical properties. Materials Science and Engineering A352, pp. 162‒168, doi:10.1016/S0921- 5093(02)00891-2.
- 13. Grabian, J. Wysocki, J. & Gawdzińska, K. (2003) Attempting to join metal suspension composites by welding. Kompozyty, Wybór Prac Zachodniopomorskiego Oddziału PTMK. Szczecin, pp. 31‒36.
- 14. Grund, T. Gester, A. Wagner, G. Habisch, S. & Mayr, P. (2018) Arc brazing of aluminum, aluminum matrix composites and stainless steel in dissimilar joints. Metals 8 (3), pp. 166‒172, doi:10.3390/met8030166.
- 15. Guo, K.W. (2012) In situ reaction during pulse Nd:YAG laser welding SiCp/A356 with Ti as filler metal. In: R. Kovacevic (ed.) Welding Processes, pp. 55‒74, doi: 10.5772/ 46087.
- 16. Guo, J. Gougeon, P. & Chen, X.G. (2012) Study on laser welding of AA1100-vol16% B4C metal-matrix composites. Composites Part B: Engineering 43 (5), pp. 2400‒2408, doi: 10.1016/j.compositesb.2011.11.044.
- 17. Hashim, J. Looney, L. & Hashmi, M.S.J. (1999) Metal matrix composites: production by stir casting method. Journal of Materials Processing Technology 92‒93, pp. 1‒7, doi: 10.1016/S0924-0136(99)00118-1.
- 18. Hirose, A. Fukumoto, S. & Kobayashi, K.F. (1995) Joining processes for structural applications of continuous fiber reinforced MMCs. Key Engineering Materials 104‒107, pp. 853‒872, doi: 10.4028/www.scientefic.net/KEM.104- 107.853.
- 19. Irving, B. (1991) What’s being done to weld metal-matrix composites. Welding Journal, pp. 65‒67.
- 20. Itsukaichi, T. Umemoto, M. Okane, I. Eagar, T. & Fukui, K. (1991) Joining of aluminum matrix composites by plasma spraying. New advances in welding and allied processes, Proceedings of the International Conference 8‒10 May, Beijing, China, Vol. II, pp. 292‒ 298.
- 21. Kaczmar, J.W. Pietrzak, K. & Włosiska, W. (2000) The production and application of metal matrix composites material. Journal of Materials Processing Technology 106, pp. 58‒67, doi: 10.1016/S0924-0136(00)00639-7.
- 22. Kalaiselvan, K. Dinaharan, I. & Murugan, N. (2014) Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite. Materials Design 55, pp. 176–182, doi: 10.1016/j. matdes.2013.09.067.
- 23. Kallee, S.W. Nicholas, E.D. & Thomas, W.M. (2002) Friction Stir Welding: Invention, Innovations and Industrialization. Seminar “Rührreibschweißen (FSW – ein modernes Fügeverfahren” at Schweißtechische Lehr – und Versuchsanstalt Berlin-Brandenburg.
- 24. Khan, A.G. & Rajakumar, S. (2018) Influence of rotational speed on mechanical and microstructural characteristics on the rotary friction weld LM25/10%SiC aluminum metal matrix composites. Journal of Advance Microscopy Research 13, pp. 278‒161, doi: 10.1166/jamr.2018. 1390.
- 25. Klimpel, A. (1999) Spawanie, zgrzewanie i cięcie metali. Warszawa: Wydawnictwo Naukowo-Techniczne.
- 26. Kumar, A. Vichure, O. Debnath, K. & Paswan, M. (2021) Fabrication methods of metal matrix composites (MMCs). Materials Today: Proceedings 46 (15), pp. 6840‒6846, doi: 10.1016/j.matpr.2021.04.432.
- 27. Lean, P.P. Gil, L. & Ureña, A. (2003) Dissimilar welds between unreinforced AA6082 and AA6092/SiC/25p composite by pulsed-MIG arc welding using unreinforced filler alloys (Al-5Mg and Al-5Si). Journal of Materials Processing Technology 143‒144, pp. 846‒850, doi: 10.1016/S0924- 0136(03)00331-5.
- 28. Lee, C.S. Li, H. & Chandel, R.S. (1999) Vacuum-free diffusion bonding of aluminum metal matrix composite. Journal of Material Processing Technology 89‒90, pp. 326‒330, doi: 10.1016/S0924-0136(99)00144-2.
- 29. Lienert, T.J. Baeslack, W.A. Ringnalda, J. & Fraser, H.L. (1996) Inertia-friction welding of SiC-reinforced 8009 aluminum. Journal of Material Science 31 (6), pp. 2149‒2157, doi: 10.1016/S0924-0136(99)00144-2.
- 30. Lienert, T.J. Brandon, E.D. & Lippold, J.C. (1993) Laser and electron beam welding of SiCp reinforced aluminum A-356 metal matrix composite. Scripta Metallurgica et Materiala 28, pp. 1341‒1346, doi: 10.1016/0956-716X(93) 90479-C.
- 31. Liming, L. Meili, Z. Longxiu, P. & Lin, W. (2001) Studding of micro-bonding in diffusion welding joint for composite. Materials Science and Engineering A315, pp. 103‒107, doi: 10.1016/S0921-5093(01)01185-6.
- 32. Lin, B. Mu, C.K. Wu, W.W. & Hung, C.H. (1999) Effect of joining design and volume fraction on friction welding properties of A360/SiC(p) composites. Welding Research Supplement, pp. 100‒108.
- 33. Liu, L. Zhu, M. & Niu, L. (2001) Study on behavior of reinforcement in molten pool for submicron composite Al2O3 p/6061 Al during laser welding. China welding.
- 34. Lu, J. Mu, Y. Luo, X. & Niu, J. (2012) A new method for soldering particle-reinforced aluminum metal matrix composites. Materials Science and Engineering B 177, pp. 1759‒1763, doi: 10.1016/j.mseb.2012.08.001.
- 35. Madhavi, T. Ravi, S.D. Prasannal, L.K. & Perumalla, J. (2022) Friction Stir Welding Process Parameters Significance and Impact on Metal Matrix Composites Joints: A Brief Review. AIP Conference Proceedings 2648, 030016, doi: 10.1063/5.0114492.
- 36. Maurya, M. Kumar, S. & Bajpai, V. (2018) Assessment of the mechanical properties of aluminum metal matrix composites: A review. Journal of Reinforced Plastics and Composites 38 (6), pp. 267‒298, doi: 10.1177/0731684418816379.
- 37. Mazar Atabaki, M. Yazdan, N. & Kovacevic, R. (2016) Partial penetration laser-based welding of aluminum alloy (AA 5083-H32). Optik 127 (16), pp. 6782‒6804, doi: 10.1016/J.IJLEO.2016.05.007.
- 38. Midling, O.T. & Grong, O. (1994) A process model for friction welding of Al-Mg-Si and Al-SiC metal matrix composites – II. HAZ microstructure and strength evolution. Acta Metallurgica Materiala 42 (5), pp. 1611‒1622, doi: 10.1016/0956-7151(94)90370-0.
- 39. Ni, D.R. Chen, D.L. Wang, D. Xiao, B.L. & Ma, Z.Y. (2013) Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/ AA2009-T351 sheet. Materials Design 51, pp. 199–205, doi: 10.1016/j.matdes.2013.04.027.
- 40. Niu, J. Pan L. Wang, M.Z. Fu, C.B. & Meng, X.D. (2006) Research on laser welding of aluminum matrix composite SiCw/6061. Vacuum, 80 (11‒12), pp. 1396‒1399.
- 41. Parikh, V.K. Patel, V. Pandya, D.P. & Andersson, J. (2023) Current status on manufacturing routes to produce metal matrix composites: State-of-the-art. Heliyon 9 (2), e13558, doi: 10.1016/j.heliyon.2023.e13558.
- 42. Periyasamy, P. Mohan, B. & Balasubramanian, V. (2012) Effect of heat input on mechanical and metallurgical properties of friction stir welded AA6061-10% SiCp MMCs. Journal Material Engineering Performance 21 (11), pp. 2417– 2428, doi: 10.1007/s11665-012-0176-5.
- 43. Prabhu, S. Murthy, A. Shettigar, A. Herbert, H. & Rao, S. (2018) Friction stir welding of aluminum matrix composites – A Review. MATEC Web of Conferences 144, 03002.
- 44. Prado, R.A. Murr, L.E, Soto, K.F. & McClure, J.C. (2003) Self-optimization in tool wear for friction-stir welding of Al 6061 + 20% Al2O3 MMC. Materials Science and Engineering: A 349 (1–2), pp. 156–165, doi: 10.1016/ S0921-5093(02)00750-5.
- 45. Prado, R.A. Murr, L.E. Shindo, D.J. & Soto, K.F. (2001) Tool wear in the friction-stir welding of aluminum alloy 6061 + 20% Al2O3 a preliminary study. Scripta Materiala 45, pp. 75–80, doi: 10.1016/S1359-6462(01)00994.
- 46. Praveen, P. & Yarlagadda, P.K.D.V. (2005) Metting challenges in welding of aluminum alloys thorough pulse gas metal arc. Journal of Materials Processing Technology 164‒165, pp. 1106‒1112, doi: 10.1016/j.jmatprotec.2005.02. 224.
- 47. Rosenberg, R.A, Goeppner, G.A. Noonan, J.R. Farrell, W.J. & Ma, Q. (1997) High power X-Ray welding of metal matrix composites. Argonne National Laboratory, Argonne, Report number Patents-US-A8974167.
- 48. Rosenberg, R.A. Ma, Q. Farrell, W. Keefe, M. & Mancini, D.C. (1997) X-ray welding of metal matrix composites. Argonne National Laboratory, Argonne, Report IL 60439 USA, 1997.
- 49. Salih, O.S, Ou, H. Sun, W. & Mccartney, D.G. (2015) A review of friction stir welding of aluminum matrix composites. Materials and Design 86, pp. 61‒71, doi: 10.1016/j. matdes.2015.07.071.
- 50. Sharma, D.K. Mahant, D. & Upadhyay, G. (2020) Manufacturing of metal matrix composites: A state of review. Materials Today: Proceedings 26 (2), pp. 506‒519, doi: 10.1016/j.matpr.2019.12.128.
- 51. Sivachidambaram, P. & Balachandar, K. (2015) Optimization of pulse current TIG welding parameters on Al-SiC metal matrix composites – An empirical approach. Indian Journal of Science and Technology 8 (23), doi: 10.17485/ IJST/2015/V8123/79201.
- 52. Storjohan, D. Babu, S.S. Davids, A. & Sklad, P. (2003) Friction Stir of Aluminum Metal Matrix Composites. Government Contract USA DE-AC05-000R2272, Report.
- 53. Uluköy, A. (2017) Pulse metal inert gas (MIG) welding and its effects on the microstructure and element distribution of an aluminum matrix reinforced with SiC composite material. Material Science & Engineering Technology 48 (2), pp. 163‒176, doi: 10.1002/mawe.201700568.
- 54. Ureña, A. Escalera, M.D. & Gil, L. (2000) Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminum matrix composites. Composites Science and Technology 60, pp. 613‒622, doi: 10.1016/S0266- 3538(99)00168-2.
- 55. Ureña, A. Escriche-Fernandez, E. & Gomez de Salazar, J. (2001) High-temperature soldering of SiC particulate aluminum matrix composites (series 2000) using Zn-Al filler alloys. Science and Technology of Welding & Joining 6(1), pp. 1‒11, doi: 10.1179/136217101101538479.
- 56. Ureña, A. Gomez de Salazar, J.M. & Escalera, M.D. (1995) Diffusion bonding of discontinuously reinforced SiC/Al matrix composites: The role of interlayers. Key Engineering Materials 104‒107, pp. 523‒540, doi: 10.4028/ www.scientefic.net/KEM.104-107.523.
- 57. Ureña, A. Gomez Del Salazar, J.M. Gil, L. & Escalera, M.D. (2001) Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminum matrix composites reinforced with SiC particles during casting and welding: interface reactions. Jurnal of Microscopy 196 (2), pp.124‒136, doi: 10.1046/j.1365- 2818.1999.00610.x.
- 58. Wang, X.-H. Niu, J.-T. Guan, S.-K. Wang, L.-J. & Cheng, D.-F. (2009) Investigation on TIG welding of SiCp-reinforced aluminum-matrix composite using mixed shield gas and Al-Si filler. Materials Science and Engineering: A 499 (1‒2), pp. 106‒110, doi: 10.1016/j.msea.2008.07.037.
- 59. Wysocki, J. (2007a) Influence of zirconium and scandium presence in auxiliary material on joint structure in AlSi/ SiC(p) cast composite carried out by means of TIG technique. Przegląd Spawalnictwa R.79, 8, pp. 9‒12.
- 60. Wysocki, J. (2007b) Mechanical properties of joints in AlSi/SiC(p) cast composite carried out by means of TIG technique with the use of auxiliary material such as Al-Mg, Al-Mg-Zr and Al-Mg-Zr-Sc. Przegląd Spawalnictwa, R.79, 8, pp. 49‒53.
- 61. Wysocki, J. (2009) Spajanie kompozytów na osnowie stopów aluminiowo krzemowych zbrojonych cząstkami węglika krzemu. Thesis for Doctor of Engineering, Maritime University of Szczecin.
- 62. Wysocki, J. Gawdzińska, K. & Jasionowski, R. (2010) Soldering of cast AlSi/SiCp Using Zn-Al-Cu filler material. Archiwum Technologii Maszyn i Automatyzacji 30 (3), pp. 51‒58.
- 63. Wysocki, J. Grabian, J. & Przetakiewicz, W. (2007) Continuous drive friction welding of cast AlSi/SiC(p) metal matrix composites. Archives of Foundry Engineering 7 (1), pp. 47‒52.
- 64. Wysocki, J. Staude, M. Tryte, A. & Sosnowski, M. (2024) Characterization of a new generation of AlMgZr and AlMgSc filler materials for welding metal-ceramic composites. Applied Science 14 (10), 4177, doi: 10.3390/app14104177.
- 65. Zeyu, W. Hongyang, C. Hongliang, L. Dan, W. Hongbo, H. Hassaan, A.B. Manni, L. & Duo, L. (2023) Effects of laser welding parameters on porosity and acicular phase in SiCp/6092 aluminum matrix composite welded joints. Journal of Material Research and Technology 23, pp. 5127‒5141, doi: 10.1016/j.jmrt.2023.02.153.
- 66. Zhou, Y, Zhang, J. North, T.H. & Wang, Z. (1997) Mechanical properties of friction welded aluminum-based metal-matrix composites materials. Journal of Material Science 32, pp. 3883‒3889.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eea93210-0642-44a3-8615-425777d3976e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.