Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The acoustic detection performance of hydrophones on the acoustic characteristics of targets is highly sensitive to external vibrations and noise interference. With the limitations of volume within autonomous underwater vehicles (AUVs) and highly corrosive ocean environments, the design of an embedded vibration isolator (VI) is needed so as to protect the hydrophones equipped on AUVs. To effectively isolate the low-frequency vibration produced by actuators on the AUV, such as the thruster, rudder, etc., this paper designs a VI for a hydrophone equipped on the AUV by using a metamaterial with quasi-zero stiffness (QZS) characteristics. This VI contains circumferential vibration-damping units, which improve the overall vibration damping effect through integration with the radial multi-stage damping layers. As a result, by utilising harmonic response analysis, the conformal design of eight circumferential units and two radial layers is optimised across all designs; its maximum vibration transmissibility is 56 dB at 500 Hz. Finally, the effectiveness of the QZS VI is verified through an experiment, which also shows a good match with the trend of the simulation results. This work also provides theoretical guidance for further study on the optimisation of phononic crystal mechanisms for vibration damping.
Czasopismo
Rocznik
Tom
Strony
121--128
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
- Laoshan Laboratory, Qingdao, China
- Qingdao Collaborative Innovation Research Institute, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, China
- Laoshan Laboratory, Qingdao, China
autor
- Laoshan Laboratory, Qingdao, China
autor
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, China
- Laoshan Laboratory, Qingdao, China
Bibliografia
- 1 Liu X, Yang Y, Yang X, Liu L, Shi L, Li Y, et al. Zero-shot learning-based recognition of highlight images of echoes of active sonar. Electronics (Basel) 2024;13:457. https://doi.org/10.3390/electronics13020457.
- 2 Saheban H, Kordrostami Z. Hydrophones, fundamental features, design considerations, and various structures: A review. Sens Actuators A Phys 2021;329:112790. https://doi.org/10.1016/j.sna.2021.112790.
- 3 Sun Q, Zhou H. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor. Polish Maritime Research 2022;29:57–62. https://doi.org/10.2478/pomr-2022-0006.
- 4 Chen Y, Lu D, Xing H, Ding H, Luo J, Liu H, et al. Recent progress in MEMS fiber-optic Fabry–Perot pressure sensors. Sensors 2024;24:1079. https://doi.org/10.3390/s24041079.
- 5 Smith TA, Rigby J. Underwater radiated noise from marine vessels: A review of noise reduction methods and technology. Ocean Engineering 2022;266:112863. https://doi.org/10.1016/j.oceaneng.2022.112863.
- 6 Lu Z, Yu X, Lau S-K, Khoo BC, Cui F. Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation. Applied Acoustics 2020;157:107003. https://doi.org/10.1016/j.apacoust.2019.107003.
- 7 Geyer TF. Effect of a porous coating on the vortex shedding noise of a cylinder in turbulent flow. Applied Acoustics 2022;195:108834. https://doi.org/10.1016/j.apacoust.2022.108834.
- 8 Sun X, Qi Z, Xu J. A novel multi-layer isolation structure for transverse stabilization inspired by neck structure. Acta Mechanica Sinica 2022;38:521543. https://doi.org/10.1007/s10409-022-09039-x.
- 9 Ji L, Luo Y, Zhang Y, Xie S, Xu M. A creative wide-frequency and large-amplitude vibration isolator design method based on magnetic negative stiffness and displacement amplification mechanism. J Sound Vib 2024;572:118185. https://doi.org/10.1016/j.jsv.2023.118185.
- 10 Valipour A, Kargozarfard MH, Rakhshi M, Yaghootian A, Sedighi HM. Metamaterials and their applications: An overview. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2022;236:2171–210. https://doi.org/10.1177/1464420721995858.
- 11 Yang J, Dai G, Zhu R, Yue Y, Yin X. How does vibration isolator affect marine double-layer gearbox case? A dynamic response analysis. Journal of Vibration Engineering & Technologies 2021;9:2169–81. https://doi.org/10.1007/s42417-021-00354-2.
- 12 El-Borgi S, Fernandes R, Rajendran P, Yazbeck R, Boyd JG, Lagoudas DC. Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments. J Sound Vib 2020;488:115647. https://doi.org/10.1016/j.jsv.2020.115647.
- 13 Qi D, Yu H, Hu W, He C, Wu W, Ma Y. Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mech Lett 2019;28:58–68. https://doi.org/10.1016/j.eml.2019.02.005.
- 14 Li N, Bai C, Liu M. Configuration-controllable porous metamaterial and its bandgap characteristics: Experimental and numerical analysis. J Sound Vib 2022;535:117107. https://doi.org/10.1016/j.jsv.2022.117107.
- 15 Jin Y, Jia X-Y, Wu Q-Q, He X, Yu G-C, Wu L-Z, et al. Design of vibration isolators by using the Bragg scattering and local resonance band gaps in a layered honeycomb meta-structure. J Sound Vib 2022;521:116721. https://doi.org/10.1016/j.jsv.2021.116721.
- 16 Liu Y, Liu J, Pan G, Huang Q. Vibration and sound radiation characteristics of a novel integrated absorber periodic layered isolator. Journal of Vibration Engineering & Technologies 2024. https://doi.org/10.1007/s42417-024-01439-4.
- 17 Ye Y, Mei C, Li L, Wang X, Ling L, Hu Y. Broadening band gaps of Bragg scattering phononic crystal with graded supercell configuration. J Vib Acoust 2022;144. https://doi.org/10.1115/1.4055876.
- 18 Amaral DR, Ichchou MN, Kołakowski P, Fossat P, Salvia M. Lightweight gearbox housing with enhanced vibro-acoustic behavior through the use of locally resonant metamaterials. Applied Acoustics 2023;210:109435. https://doi.org/10.1016/j.apacoust.2023.109435.
- 19 Zhang S, Qian D, Zhang Z, Ge H. Low-frequency bandgap characterization of a locally resonant pentagonal phononic crystal beam structure. Materials 2024;17:1702. https://doi.org/10.3390/ma17071702.
- 20 Ding W, Chen T, Yu D, Chen C, Zhang R, Zhu J, et al. Isotacticity in chiral phononic crystals for low-frequency bandgap. Int J Mech Sci 2024;261:108678. https://doi.org/10.1016/j.ijmecsci.2023.108678.
- 21 Ye K, Ji JC, Brown T. Design of a quasi-zero stiffness isolation system for supporting different loads. J Sound Vib 2020;471:115198. https://doi.org/10.1016/j.jsv.2020.115198.
- 22 Liu J, Wang Y, Yang S, Sun T, Yang M, Niu W. Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation. Int J Mech Sci 2024;269:108958. https://doi.org/10.1016/j.ijmecsci.2024.108958.
- 23 Ibrahim RA. Recent advances in nonlinear passive vibration isolators. J Sound Vib 2008;314:371–452. https://doi.org/10.1016/j.jsv.2008.01.014.
- 24 Dalela S, Balaji PS, Jena DP. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn 2022;108:1931–71. https://doi.org/10.1007/s11071-022-07301-0.
- 25 Jia D, Zou Y, Pang F, Miao X, Li H. Experimental study on the characteristics of flow-induced structure noise of underwater vehicle. Ocean Engineering 2022;262:112126. https://doi.org/10.1016/j.oceaneng.2022.112126.
- 26 Ren Y, Qin Y, Pang F, Wang H, Su Y, Li H. Investigation on the flow-induced structure noise of a submerged cone-cylinder-hemisphere combined shell. Ocean Engineering 2023;270:113657. https://doi.org/10.1016/j.oceaneng.2023.113657.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eea4bc7f-3a72-4279-8592-0fa0cac1f7ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.