PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasma Actuator with Two Mesh Electrodes to Control the Flow Boundary Layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript presents selected designs of Dielectric Barrier Discharge (DBD) plasma actuators used to control the flow of the boundary layer on the surface of the wing. The principle of DBD plasma actuator operation and the process of the “ion wind” formation are presented. The manuscript presents the results of the tests carried out on the sash model with the SD 7003 profile and a DBD plasma actuator with two mesh electrodes, for which tests were carried out and tunnel images were recorded.
Twórcy
  • Department of Transport, University College of Enterprise and Administration, 20-150 Lublin, Poland
Bibliografia
  • 1. Wenzinger C.J. and Rogall F.M., Resume of Air- Loads on Slats and Flaps; NACA Report No. 690, 1939, National Advisory Committee for Aeronautics: Washington, DC, USA.
  • 2. Traub L.W. and Kaula Ma.P., Effect of Leading- Edge Slats at Low Reynolds Numbers, Aerospace Engineering Department, Embry Riddle Aeronautical University, Prescott, AZ 86301, USA.
  • 3. Rudolph P.K.C., High-Lift Systems on Commercial Subsonic Airliners, 1996, NASA Contractor Report 4746.
  • 4. Moraris V.M. and Lawson N.J., Garry K.P., Aerodynamic and Performance Characteristics of a Passive Leading Edge Kruger Flap at Low Reynolds Numbers. The Aeronautical Jurnal, 2012, 116(1181), 759-769.
  • 5. Akaydin H.D., Housman J.A., Kiris C.C., Bahr Ch.J., Hutcheson F.V., Computational Design of a Krueger Flap Targeting Conventional Slat Aerodynamics, 2016, 22nd AIAA/CEAS Aeroacoustics Conference, Aeroacoustics Conferences.
  • 6. Kumar M.S. and Kumar K.N., Design and Computational Studies on Plain Flaps, Bonfring. International Journal of Industrial Engineering and Management Science, 2013, 3(2), 33-39.
  • 7. Solfelt D. and Maple R., CFD Analysis of a T-38 Wing Fence, 46th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 7-10 January 2008, Reno, Nevada.
  • 8. Meftah S.M.A., Belhenniche M., O Madani Fouatih, Imine B., Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances, 2014, EPJ Web of Conferences 67, 02074.
  • 9. Odilon V., Cavazos Jr,, A Flow Visualization Study of Lex Generated Vortices on a Scale Model of a F/A-18 Fighter Aircraft at High Angles of Attack, Monterey, Californa 1990, AD-A236 534.
  • 10. Pushpender S., Varma D., Ghosh S., Novel Vortex Generator for Mitigation of Shock-Induced Flow Separation, Journal of Propulsion and Power, 2011, 32(5), 1264-1274.
  • 11. Gnapowski S., Gnapowski E., Duda A., Inproving of the quality food for animals by pulsed power plasma discharge, 2015, 9(27), 58-65, doi: 10.12913/22998624/59085.
  • 12. Gnapowski E., Gnapowski S., Pytka J., The impact of dielectrics on the electricalcapacity, concentration, efficiency ozonegeneration for the plasma reactor with meshelectrodes, Plasma Science and Technology, 2018, 20(8), 1-7, doi: 10.1088/2058- 6272/aac1b6.
  • 13. Whalley R.D. and Choi K.S., The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. Journal of Fluid Mechanics, 2012, 703, 192-203.
  • 14. Robinson M., A History of the Electric Wind. American Journal of Physics 1962, 30, 366-372.
  • 15. Gnapowski E., Review of Selected Methods for Increasing the Aerodynamic Force of the Wing, Adv. Sci. Technol. Res. J., 2019, 13(1), 60-67, doi: 10.12913/22998624/103858.
  • 16. Gnapowski E., Gnapowski S., Pytka J., Effect of Mesh Geometry on Power, Efficiency and Homogeneity of Barrier Discharges in the Presence of Glass Dielectric. IEEE Transactions on Plasma Science, 2018, 46, 3493-3498.
  • 17. Little J., Takashima K., Nishihara M., Adamovich I., Samimy M., High Lift Airfoil Leading Edge Separation Control with Nanosecond Pulse Driven DBD Plasma Actuators, 5th Flow Control Conference, Chicago, 2010, AIAA 2010-4256.
  • 18. Leroy A., Audier P., Podlinski J., Berendt A., Hong D., Mizeraczyk J., Enhancement of lift and drag performances of NACA0012 airfoil by multi-DBD plasma actuator with additional floating interelectrodes. International Symposium on Electrohydrodynamics, Gdańsk, Poland 2012.
  • 19. Erfani R., Erfani T., Utyuzhnikov S.V., Kontis K., Optimisation of multiple encapsulated electrode plasma actuator. Aerospace Science and Technology, 2012, 26, 120-127.
  • 20. Wang C.C., Durscher R., Roy S., Three-dimensional effects of curved plasma actuators in quiescent airJournal of Applied Physics, 2011, 42, 109- 117, 083305.
  • 21. Roy S., Wang C.C., Bulk flow modification with horseshoe and serpentine plasma actuators, Journal of Physics D: Applied Physics, 2009, 42(3), 032004.
  • 22. Gnapowski E., Gnapowski S., Changes in the Power Discharge in a Plasma Reactor Using Porous Versus Solid Dielectric Barriers and Meshes Electrodes, IEEE Transactions on Plasma, 2016, 44(10), 2079-2083.
  • 23. Gnapowski E., Effect of Mesh Electrodes Geometry on the Ozone Concentration in the Presence of Micanite Dielectric, Adv. Sci. Technol. Res. J., 2018, 12(4), \ 76–80, doi: 10.12913/22998624/100340.
  • 24. Vey S., Low Aspect Ratio Wing Flow Control at Low Reynolds Numbers, Doctoral dissertation, Technical University of Berlin, 2014.
  • 25. Belan M. and Messanelli F., Compared ionic wind measurements on multi-tip corona and DBD plasma actuators. Journal of Electrostatics, 2015, 76, 278-287.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eea0acbb-9131-4433-9ef9-9fb3fd0f1cd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.