PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of fatigue loads of the knee joint during gait

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to show that the fatigue load of bone tissue causes permanent structural changes in it. Methods: On the basis of the movie recording of gait, the time courses of angular changes in the joints of the lower limb were determined. Using the method of transforming Denavit–Hartenberg coordinate systems, the course of force loading the hip joint and, after that, the course of normal contact reaction of the femoral head of the knee joint during gait for the support phase were determined. On the basis of the Hertz formula, the course of contact stresses in the femoral joint head and the damage coefficient were determined according to the Palmgren–Miner damage accumulation hypothesis. Results: A calculation example was made using own software. The course of the obtained damage factor was compared to the image fixed in the X-ray image after its appropriate processing. The thesis of the work has been confirmed to a satisfactory degree. Conclusions: The nature of the lesions is similar to the image of structural changes in the head of the joint. It should be assumed that the image fixed in the bone is the result of the stored history of loads. Analysis of the obtained image can be used to determine the state of bone strength.
Rocznik
Strony
159--167
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • University of Life Sciences in Lublin, Poland
Bibliografia
  • [1] HERMAN I.P., Physics of the Human Body, Springer, Berlin, 2007.
  • [2] MRDAKOVIC V., PAZIN N., VULOVIC R., FILIPOVIC N., ILIC D., Neuromechanical control in submaximal drop jumps: the effects of volitional effort demands and drop height magnitude on soleus muscle activation, Acta Bioeng. Biomech., 2018, Vol. 20, No. 4, 101–111, DOI: 10.5277/ABB-01210-2018-02.
  • [3] HUNT M.A., HATFIELD G.L., Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue, Journal of Electromyography and Kinesiology, 2017, Vol. 35, 24–29, https://doi.org/10.1016/j.jelekin
  • [4] LONGPRÉ H.S., POTVIN J.R., MALY M.R., Biomechanical changes at the knee after lower limb fatigue in healthy young women, Clinical Biomechanics, 2013, Vol. 28, Issue 4, 441–447, https://doi.org/10.1016/j.clinbiomech
  • [5] ZIOUPOS P., GRESLE M., WINWOOD K., Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects. J. Biomed. Mater Res. A., 2008, 86 (3), 627–636, DOI: 10.1002/jbm.a.31576.
  • [6] KIM J.H., NIINOMI M., AKAHORI T., TODA H., Fatigue properties of bovine compact bones that have different microstructures, Int. J. of Fatigue, 2007, 29 (6), 1039–1050, DOI: 10.1016/j.ijfatigue.2006.09.018.
  • [7] FATIHHI S.J., HARUN M.N., KADIR M.R.A., ABDULLAH J., KAMARUL T., CHSNER A.O., SYAHROM A., Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone. Based on Physiological Loading, A Comparative Study Annals of Biomedical Engineering, 2015, DOI: 10.1007/s10439-015-1305-8.
  • [8] KUMAR SRIVASTAVA R., NIZAMULLA S., JAGADESH KUMAR J., RAVI TEJA G., Fatigue life prediction of tibia and fibula bones using finite element method, International Journal of Advance Engineering and Research Development (IJAERD), 2017, Vol. 4, Issue 11, 2348–6406. e-ISSN (O): 2348-4470 p-ISSN (P).
  • [9] KIM J.H., NIINOMI M., AKAHORI T., TAKEDA J., TODA H., Effect of Microstructure on Fatgue Strength of Bovine Compact Bones, JSME International Journal, Series A, 2005, Vol. 48, No. 4, 472–480, DOI: 10.1299/jsmea.48.472.
  • [10] RABIJ K., KAJZER A., KAJZER W., Examination of mechanical properties of bovine, Current Problems of Biomech., Silesian University of Technology, 2015, No. 9, 105–110, ISSN 1898-763X (in Polish).
  • [11] BŁAŻKIEWICZ M., WIT A., Artificial neural network simulation of lower limb joint angles in normal and impaired human gait, Acta Bioeng. Biomech., 2018, Vol. 20, No. 3, 43–49, DOI: 10.5277/ABB-01129-2018-02.
  • [12] VAN CRIEKINGE T., TRUIJEN S., HALLEMANS A., SAEYS W., The influence of a thoracolumbosacral orthosis on gait performance in healthy adults during walking, Acta Bioeng. Biomech., 2018, Vol. 20, No. 4, 15–21, DOI: 10.5277/ABB-01201-2018-02.
  • [13] STĘPNIEWSKI A.A., Structural, geometric and static analysis of the mechanism of the human knee joint, Acta Mechanica et Automatica (AMA), Białystok 2010, Vol. 4, No. 1, OWPB, 80–85, ISSN 1898-4088 (in Polish).
  • [14] JASTRZĘBSKI P., MUTERMILCH J., ORŁOWSKI W., Strength of materials, Part 2, Arkady, Warszawa 1985 (in Polish).
  • [15] KOCAŃDA S., SZALA J., Basics of fatigue calculations, PWN, Warszawa 1985 (in Polish).
  • [16] STĘPNIEWSKI A.A., The system for assessing the bone strength status and the way of conducting the assessment, Patent Application No P.413247, BUP 03/2017, p. 46 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee9da3d5-e97f-446d-a407-d3b7bdbf0948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.