PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Intensive Mixing and Shearing Elements on the Effectiveness of Extrusion of Wood Polypropylene Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to determine the effect of various design solutions for intensive mixing and shearing elements located at the end of a single-screw plasticizing system on the effectiveness of wood polypropylene composite extrusion. Four types of such elements were used in the study: a pineapple mixer, a Maddock mixer, a ring mixer, and a helical mixer. For the purpose of the study, 4 blends were prepared containing 5, 10, 15 and 20% of wood fibre, respectively. Direct and indirect resulting factors as well as variable, constant and disturbing factors were investigated. The effectiveness of extrusion of wood polypropylene composites was determined based on results of parameters characterizing this process, such as extrudate temperature, unit consumption of energy supplied to the extruder, mass flow rate, and extrusion speed. It has been shown that the effectiveness of the extrusion process can be improved by using different mixing and shearing elements. Such screw design solutions make it possible to affect rheological phenomena occurring during melt flow in the plasticizing system, without modifying the extrusion process parameters such as screw rotation speed and polymer temperature. The literature review shows that there exist very few and general studies investigating the effect of screw design geometry, especially that of mixing and shearing elements, on the efficiency of extruding and mixing wood polypropylene materials.
Twórcy
  • Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Jung H., White J.L. Investigation of melting phenomena in modular co-rotating twin screw extrusion. International Polymer Processing. 2003; 18: 127–132.
  • 2. Rosato D.V. Extruding Plastics: A Practical Processing Handbook. Springer Science & Business Media. 2013; 208–213.
  • 3. Głogowska K., Sikora J., Dulebova L. Properties of Moldings Prepared from LDPE-Pumpkin Seed Hulls Blend. Advances in Science and Technology Research Journal. 2017; 11(4): 318–325.
  • 4. Wilczyński K., Nastaj A., Lewandowski A., Wilczyński K.J., Buziak K. Fundamentals of Global Modeling for Polymer Extrusion. Polymer. 2019; 11: 2106.
  • 5. Mount E.M. 12 - Extrusion Processes. In Applied Plastics Engineering Handbook: Processing, Materials, and Applications (Second Edition); Kutz, M., Ed.; Plastics Design Library; William Andrew Publishing; 2016.
  • 6. Sikora J.W. Comparison between LDPE conventional and autothermal extrusion characteristics. International Polymer Processing. 1998; 13: 9–12.
  • 7. Jian R., Yang W., Cheng L., Xie P. Numerical analysis of enhanced heat transfer by incorporating torsion elements in the homogenizing section of polymer plasticization with the field synergy principle. International Journal of Heat and Mass Transfer – Journals. 2017; 15; 946–953.
  • 8. Kelly A.L., Brown E.C., Coates P.D. The effect of screw geometry on melt temperature profile in single screw extrusion. Polymer Engineering and Science. 2006; 46: 1706–1714.
  • 9. Bur A.J., Roth S.C., Spalding M.A., Baugh, D.W., Koppi K.A., Buzanowski W.C. Temperature gradients in the channels of a single‐screw extruder. Polymer Engineering and Science. 2004; 44: 2148–2157.
  • 10. Chung C.I. Mixing study on different pineapple mixer designs-simulation results. Proceedings of SPE ANTEC, Detroit, United States, May 2000, Technomic Publishing Co, U.S.; 2000.
  • 11. Rauwendaal C. Polymer Extrusion. Carl Hanser Verlag: Munich, Germany; 2014.
  • 12. Rauwendaal C. Polymer mixing: A self-study guide. Carl Hanser Verlag: Munich, Germany; 1998.
  • 13. Zitzenbacher G., Karlbauer R., Thiel H. A new calculation model and optimization method for mad-dock mixers in single screw plasticising technology. International Polymer Processing. 2007; 22: 73–8.
  • 14. Sikora J.W. Increasing the efficiency of the extrusion process. Polymer Engineering and Science. 2008; 48: 1678–1682.
  • 15. Głogowska K., Sikora J., Majewski Ł. New concepts for the active grooved-feed section extruder. International Journal of Industrial Engineering and Management 4.0. 2017; 5: 237–240.
  • 16. Mazzanti V., Mollica F. A Review of Wood Polymer Composites Rheology and Its Implications for Processing. Polymer. 2020; 12: 2304.
  • 17. Potente H., Többen W.H. Improved design of shearing sections with new calculation models based on 3D finite‐element simulations. Macromolecular Materials and Engineering. 2020; 287: 808–814.
  • 18. Sikora J.W., Kapusniak T. Efficiency of the extrusion process and characteristics of a conical-circular die. Polimery. 2005; 50: 748–754.
  • 19. Hopmann C., Schön M., Reul M.M., Facklam M. A Method for the Validation of Simulated Mixing Characteristics of Two Dynamic Mixers in Single-Screw Extrusion. Polymer. 2020; 12: 2234.
  • 20. Li T.Q., Wolcott M.P. Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polymer Engineering Science. 2005; 45: 549–559.
  • 21. Kaseem M., Hamad K., Deri F., Ko Y.G. Effect of wood fibers on the rheological and mechanical properties of polystyrene/wood composites. Journal of Wood Chemistry and Technology. 2017; 37: 251–260.
  • 22. Duretek I., Schuschnigg S., Gooneie A., Langecker G.R., Holzer C. Rheological properties of wood polymer composites and their role in extrusion. Journal of Physics: Conference Series. 2015; 602: 012014.
  • 23. Li T.Q., Wolcott M.P. Rheology of HDPE–wood composites. I. Steady state shear and extensional flow. Composites Part A. 2004: 35; 303–311.
  • 24. Carrino L., Ciliberto S., Giorleo G., Prisco U. Effect of filler content and temperature on steady‐state shear flow of wood/high density polyethylene composites. Polymer Composites. 2011; 32: 796–809.
  • 25. Hristov V., Takacs E., Vlachopoulos J. Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites. Polymer Engineering Science. 2006; 46: 1204–1214.
  • 26. Hristov V., Vlachopoulos J. Thermoplastic silicone elastomer lubricant in extrusion of polypropylene wood flour composites. Advances Polymer Technology. 2007; 26: 100–108.
  • 27. Barczewski M., Barczewski R., Chwalczuk T. The in-line detection method of sharkskin melt flow instability during polyethylene extrusion based on pressure analysis. Journal of Manufacturing Processes. 2020; 59: 53–166.
  • 28. Sasimowski E., Sikora J.W. Królikowski, B. Effectiveness of Polyethylene Extrusion in a Single-Screw Grooved Feed Extruder. Polimery. 2014; 59: 505–510.
  • 29. Li H., Law S., Sain M. Process rheology and mechanical property correlation ship of wood floor-polypropylene composites. Journal of Reinforced Plastics and Composites. 2004; 23: 1153–1158.
  • 30. Maiti S.N., Subbarao, R., Ibrahim M.N. Effect of wood fibers on the rheological properties of i‐PP/wood fiber composites. Journal of Applied Polymer Science. 2004; 91: 644–650.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee91ea1d-dd36-4d1a-87cf-1f21492740ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.