PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New test method with a Hybrid III Anthropomorphic Dummy for Textile Safety Harnesses

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Metoda badania szelek bezpieczeństwa w warunkach obciążenia dynamicznego z zastosowaniem manekina antropomorficznego typ Hybrid III
Języki publikacji
EN
Abstrakty
EN
A full body harness is a basic component of personal fall arrest equipment. It is made from webbing connected by seams and metal fittings to firmly hold and support the user’s body. The paper proposes a new method for full body harness testing using a Hybrid III anthropomorphic dummy; also the design of the experimental stand and software used are described. The method analyses the behaviour of a dummy during a fall arrest under well-defined conditions. The critical mechanical factors measured during the study presented were: the head acceleration, forces acting on the spine, the position of the dummy, the impacts of harness elements to the head, etc. The tests identified some potentially dangerous phenomena associated with falls from a height. The harness testing method developed turned out to be a valuable tool that should be applied in conjunction with existing strength testing methods.
PL
Szelki bezpieczeństwa są podstawowym składnikiem indywidualnego sprzętu chroniącego przed upadkiem z wysokości. Szelki są konstrukcją z tkanych taśm włókienniczych połączonych ze sobą za pomocą szwów i metalowych elementów łączących, w taki sposób aby obejmowały i podtrzymywały ciało użytkownika. W artykule przedstawiono nową metodę badania szelek za pomocą manekina antropomorficznego Hybrid III oraz zaprezentowano stanowisko badawcze i wykorzystywane oprogramowanie. Zaproponowana metoda opiera się na badaniu zachowania manekina ubranego w szelki podczas powstrzymywania spadania w ściśle określonych warunkach. Do najważniejszych wielkości mierzonych w badaniach należą: przyspieszenia głowy, siły w kręgosłupie, pozycja manekina, uderzenia elementów szelek w głowę manekina itp. Uzyskane wyniki pozwoliły na identyfikację potencjalnie niebezpiecznych zjawisk towarzyszących powstrzymywaniu spadania z wysokości. Opracowana metoda badań okazała się cennym narzędziem do oceny szelek, które powinno być stosowane wraz z dotychczasowymi metodami o charakterze wytrzymałościowym.
Rocznik
Strony
81--86
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, Wierzbowa 48, 90-133 Łódź
Bibliografia
  • 1. European Committee for Standardization (CEN). (2012). Personal fall protection equipment – anchor devices (Standard No. EN 795:2012). Brussels, Belgium
  • 2. European Committee for Standardization (CEN). (2010). Personal fall protection equipment. Lanyards (Standard No. EN 354:2010). Brussels, Belgium.
  • 3. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height. Energy absorbers (Standard No. EN 355:2002). Brussels, Belgium.
  • 4. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height. Retractable type fall arresters (Standard No. EN 360:2002). Brussels, Belgium.
  • 5. European Committee for Standardization (CEN). (2014). Personal fall protection equipment. Guided type fall arresters including an anchor line. Guided type fall arresters including a rigid anchor line (Standard No. EN 353-1:2014). Brussels, Belgium.
  • 6. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height. Guided type fall arresters including a flexible anchor line (Standard No. EN 353-2:2002). Brussels, Belgium.
  • 7. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height – Full body harnesses (Standard No. EN 361:2002). Brussels, Belgium.
  • 8. Baszczyński K, Jachowicz M. Load-Elongation Characteristics of Connecting and Shock-Absorbing Components of Personal Fall Arrest Systems. FIBRES & TEXTILES in Eastern Europe. 2012, 20, 6A(95):78-85.
  • 9. Regulation (EU) 2016/425 of the European Parliament and of the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC.
  • 10. European Committee for Standardization (CEN). Personal protective equipment against falls from a height – Test methods (Standard No. EN 364:1992). Brussels, Belgium.
  • 11. http://www.humaneticsatd.com/
  • 12. Perz R. Metodyka badania podatności klatki piersiowej na obrażenia podczas zderzenia czołowego. [Test method of chest susceptibility for injuries during head-on collision]. Prace Naukowe Politechniki Warszawskiej, Zeszyt 100, Transport, 2013. Politechnika Warszawska, Instytut Techniki Lotniczej i Mechaniki Stosowanej.
  • 13. Jaśkiewicz M, Jurecki R, Więckowski D. Overview and analysis of dummies used for crash tests. Zeszyty Naukowe, Akademia Morska w Szczecinie, 2013, 35(107) s. 22-31.
  • 14. Awrejcewicz J, Łuczak B. Calibration of the new human thorax model for low impact loading rates. Journal of KONES Powertrain and Transport 2007; 14, 1.
  • 15. Viano D. C., Parenteau C. S., Burnett R.: Influence of Standing or Seated Pelvis on Dummy Responses in Rear Impacts. Accident Analysis and Prevention 2012; 45: 423-431.
  • 16. Hu J, Klinich KD, Reed MP, Kokkolaras M, Rupp JD. Development and Validation of a Modified Hybrid-III Six-Year-Old Dummy Model for Simulating Submarining in Motor-Vehicle Crashes. Medical Engineering & Physics 2012; 34: 541-551.
  • 17. Peng Y, Chen Y, Yang J, Otte D, Willinger R. A Study of Pedestrian and Bicyclist Exposure to Head Injury in Passenger Car Collisions Based on Accident Data and Simulations. Safety Science 2012; 50: 1749-1759.
  • 18. Willinger R D. A Study of Pedestrian and Bicyclist Exposure to Head Injury in Passenger Car Collisions Based on Accident Data and Simulations. Safety Science 2012; 50 1749-1759.
  • 19. Xiaochuan L, Jun G, Chunyu B, Xiasheng S, Rangke M. Drop Test and Crash Simulation of a Civil Airplane Fuselage Section. Chinese Journal of Aeronautics 2015; 28(2): 447-456.
  • 20. Petrone N, Tamburlin L, Panizzolo F, Atzori B. Development of an Instrumented Anthropomorphic Dummy for the Study of Impacts and Falls in Skiing. 8th Conference of the International Sports Engineering Association (ISEA). Procedia Engineering 2010; 2: 2587-2592.
  • 21. Bartsch A, Benzel E, Miele V, Morr D, PrakashV. Hybrid III Anthropomorphic Test Device (ATD) Response to Head Impacts and Potential Implications for Athletic Headgear Testing. Accident Analysis and Prevention 48 (2012) 285-291.
  • 22. Petrone N, Panizzolo F, Marcolin G. Behaviour of an Instrumented Anthropomorphic Dummy During Full Scale Drop Tests. 5th Asia-Pacific Congress on Sports Technology (APCST). Procedia Engineering 2011; 13: 304-309.
  • 23. Miyamoto S, Inoue S. Reality and Risk of Contact-Type Head Injuries Related to Bicycle-Mounted Child Seats. Journal of Safety Research 2010; 41: 501-505.
  • 24. Deemer E, Gina Bertocci G, Pierce MC, Aguel F, Janosky J, Vogeley E. Influence of Wet Surfaces and Fall Height on Pediatric Injury Risk in Feet-First Free Falls as Predicted Using a Test Dummy. Medical Engineering & Physics 2005; 27: 31-39.
  • 25. Raymond D E, Catena R D, Vaughan T R. Biomechanics and Injury Risk. Assessment of Falls onto Protective Floor Mats. Rehabilitation Nursing, 2011; 36, 6, November/December: 248-54.
  • 26. Kloß G, Ottersbach HJ. Aufbau von Versuchseinrichtungen für Fallversuche mit einem Gliederdummy. Abschlußbericht Nr. 8907112.2 zum Projekt nr. 6042. Fachausschuß Persönliche Schutzausrüstung, Kronprinzenstraße 62-67, 44135 Dortmund 1.
  • 27. Nelson J K Jr, Waught P J, Schweickhardt A J. Injury criteria of the IMO and the Hybrid III dummy as indicators of injury. Ocean Engng 1996; 23, 5: 385-401. Copyright © 1996 Elsevier Science Ltd.
  • 28. Marjoux D, Baumgartner D, Deck C, Willinger R. Head Injury Prediction Capability of the HIC, HIP, Simon and ULP Criteria. Accident Analysis and Prevention 2008; 40: 1135-1148.
  • 29. Hutchinson J, Kaiser M J, Lankarani H M. The Head Injury Criterion (HIC) functional. Applied Mathematics and Computation 1998; 96: 1-16.
  • 30. Newman J, Barr C, Beusenberg M, Fournier E, Shewchenko N, Welbourne E, Withnall C. A New Biomechanical Assessment of Mild Traumatic Brain Injury. Part 2: Results and Conclusions. Proceedings of the 2000 International IRCOBI Conference on the Biomechanics of Impact 2000; September 20-22, Montpellier, France.
  • 31. European Committee for Standardization (CEN). (2016). Mountaineering equipment. Dynamic mountaineering ropes. Safety requirements and test methods (Standard No. EN 892:2012+A1:2016). Brussels, Belgium.
  • 32. Baszczyński K, Jachowicz M. Load-Elongation Characteristics of Connecting and Shock-Absorbing Components of Personal Fall Arrest Systems. FIBRES & TEXTILES in Eastern Europe 2012, 20, 6A(95): 78-85.
  • 33. Baszczyński K. Modeling the Performance of Selected Textile Elements of Personal Protective Equipment Protecting against Falls from a Height During Fall Arrest. FIBRES & TEXTILES in Eastern Europe 2013, 21, 4(100): 130-136.
  • 34. Baszczyński K. Modeling the Performance of Horizontal Anchor Lines During Fall Arrest. FIBRES & TEXTILES in Eastern Europe 2017; 25, 5(125): 95-103. DOI: 10.5604/01.3001.0010.4634http://www.imagesystems.se/image-systems-motion-analysis/products/tema-motion.aspx.
  • 35. https://www.ptc.com/en/products/mathcad.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee901442-6b9d-475d-9a48-362f52ca45bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.