PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR) shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm) and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa) while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm) with low power consumption (from a minimum of 63 mW to a max. of 110 mW) and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.
Rocznik
Strony
547--558
Opis fizyczny
Bibliogr. 15 poz., rys., wykr., wz.
Twórcy
autor
  • École Polytechnique Fédérale de Lausanne Institut de Microtechnique (IMT), Laboratoire d’Actionneurs Intégrés (LAI) Rue de la Maladière, 71 B, 2002 Neuchâtel, Switzerland
autor
  • École Polytechnique Fédérale de Lausanne Institut de Microtechnique (IMT), Laboratoire d’Actionneurs Intégrés (LAI) Rue de la Maladière, 71 B, 2002 Neuchâtel, Switzerland
autor
  • Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Center Geneva University Hospital and University of Geneva Rue de Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
autor
  • École Polytechnique Fédérale de Lausanne Institut de Microtechnique (IMT), Laboratoire d’Actionneurs Intégrés (LAI) Rue de la Maladière, 71 B, 2002 Neuchâtel, Switzerland
Bibliografia
  • [1] Vékás L., Ferrofluids and Magnetorheological Fluids. Advanced in Science and Technology 54: 127-136 (2008).
  • [2] Phulé P.P., Magnetorheological (MR) Fluids: principles and applications. Smart Materials Bulletin 2: 7-10 (2001).
  • [3] Barnes H.A., Hutton J.F., Walters F.R.S., An Introduction to Rheology. Elsevier Science Publisher, Third Impression (1993).
  • [4] Olabi A.G., Grunwald A., Design and Application of magneto-rheological fluid. Materials and Design 28: 2658-2664 (2007).
  • [5] Carlson J.D., MR Fluids and Devices in the Real World. International Journal of Modern Physics B 7: 1463-1470 (2005).
  • [6] Jolly M.R., Blender J.W., Carlson J.D., Properties and Applications of Commercial Magnetorheological Fluids. Journal of Intelligent Materials and Structures 10(1): 5-13 (1999).
  • [7] Yavuz M., Erdemir A., Botek G. et al., Peak Plantar Pressure and Shear Location. Diabetes Case 30(10): 2643-2645 (2007).
  • [8] Perry J.E., Hall J.O., Davis B.L., Simultaneous measurement of plantar pressure and shear forces in diabetic individuals. Gait and Posture, pp. 101-107 (2002).
  • [9] Grivon D., Civet Y., Pataky Z., Perriard Y., Design and Characterization of a Soft Miniature Magneto- Rheological Shock Absorber. 10th International Symposium on Linear Drives for Industry Applications, July 27-29, Aachen, Germany (2015).
  • [10] Grivon D., Civet Y., Pataky Z., Perriard Y., Design and comparison of different Magneto-Rheological valve configurations. IEEE/ASME International Conference on Advanced and Intelligent Mechatronics, 7-11 July, Busan, Korea (2015).
  • [11] Phillips R.W., Engineering applications of fluid with variable yield stress. PhD Thesis, University of California Berkeley (1969).
  • [12] Dai G., Biron Bird R., Radial flow of Bingham fluid between two fixed circular disks. Journal of Non- Newtonian Fluid Mechanics 8: 349-355 (1981).
  • [13] Lord Corporation, Available online at http://www.lord.com/ accessed July 2015.
  • [14] AK Steel International, ARMCO Pure Iron, Available online at http://www.aksteel.com/, accessed July 2015.
  • [15] Bartdoff M.A., Lumkes J.H., High-Fidelity Magnetic Equivalent Circuit Model for an Axisymmetric Electromagnetic Actuator. IEEE Transactions on Magnetics 45(8): (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee8fbd33-83d6-40a4-bbb6-bd85acef881a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.