PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of hillslope topography on soil erosion and sediment yield using USLE model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Catchment hillslopes in nature have a complex geometry. Complex hillslopes have different plans (convergent, parallel and divergent) and different curvature (straight, concave and convex). In this study, the erosion rates of the nine complex hillslopes were investigated using the universal soil loss (USLE) method. The topography factor (LS function) in the USLE was developed as a function of plan shape and profile curvature. The hillslopes studied were divided into sets of complex pixels and the erosion over the pixels was calculated. Total erosion was regarded as the sum of erosion of all pixels. Furthermore, to calculate the sediment delivery ratio of each pixel, a new travel time equation for complex hillslopes was employed. Results showed that the mean erosion of convex hillslopes was 1.43 times that of concave and 1.19 times that of straight slopes. The effect of curvature shape on erosion was much greater than plan shape effect. The highest erosion belonged to convex divergent slopes, and the least erosion was related to concave divergent slopes. The laboratory results intended for validation of the numerical model also show that in hillslopes with fixed plan, the erosion rate in the convex hillslopes exceeds that of concave and straight hillslopes. Also, in the hillslopes with fixed curvature profile, the erosion rate in the convergent hillslopes is more than in the divergent and parallel ones.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1587--1597
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
autor
  • Faculty of Natural Resources, Yazd University, Yazd, Iran
  • Present Address: Geography Department, The University of British Columbia, Vancouver, Canada
Bibliografia
  • 1. Aryal SK, O’Loughlin EM, Mein RG (2005) A similarity approach to determine response times to steady-state saturation in landscapes. Adv Water Resour 28:99–115
  • 2. Baiamonte G, Singh VP (2015) Overland flow times of concentration for hillslopes of complex topography. J Irrig Drain Eng 142(3):04015059
  • 3. Benavidez R, Jackson B, Maxwell D, Norton K (2018) A review of the (revised) universal soil loss equation ((R) USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci 22(11):6059–6086
  • 4. Boll J, Brooks ES, Crabtree B, Dun S, Steenhuis TS (2015) Variable source area hydrology modeling with the water erosion prediction project model. J Am Water Resour Assoc 51(2):330–342
  • 5. De Lima JL, Isidoro JM, de Lima MIP, Singh VP (2017) Longitudinal hillslope shape effects on runoff and sediment loss: laboratory flume experiments. J Environ Eng 144(2):04017097
  • 6. Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51(5):427–433
  • 7. Evans IS (1980) An integrated system of terrain analysis and slope mapping. Zeitschrift fur Geomorphologie, Supplementband 36:274–295
  • 8. Fariborzi H, Sabzevari T, Noroozpour S, Mohammadpour R (2019) Prediction of the subsurface flow of hillslopes using a subsurface time-area model. Hydrogeol J 27(4):1401–1417
  • 9. Ferro V (1997) Further remarks on a distributed approach to sediment delivery. Hydrol Sci J 42(5):633–647
  • 10. Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J 40(6):703–717
  • 11. Ferro V, Porto P, Tusa G (1998) Testing a distributed approach for modelling sediment delivery. Hydrol Sci J 43(3):425–442
  • 12. Kothyari UC, Jain SK (1997) Sediment yield estimation using GIS. Hydrol Sci J 42(6):833–843
  • 13. Lu W, Li S, Li F, Lei T (2016) Laboratory study on soil erosion of loess convex and concave slopes with application of polyacrylamide. Trans Chin Soc Agric Eng 32(10):122–128
  • 14. Mombeini A (2017) Laboratory investigation of effect of the manning roughness coefficient on erosion along complex hillslopes. MSc thesis, Yazd University
  • 15. Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428
  • 16. Noroozpour S, Saghafian B, Akhondali AM, Radmanesh F (2014) Travel time of curved parallel hillslopes. Hydrol Res 45(2):190–199
  • 17. Ostovari Y, Ghorbani-Dashtaki S, Bahrami HA, Naderi M, Dematte JAM, Kerry R (2016) Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology 273:385–395
  • 18. Panagos P, Borrelli P, Meusburger K (2015) A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences 5(2):117–126
  • 19. Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46(1):30–33
  • 20. Rieke-Zapp DH, Nearing MA (2005) Slope shape effects on erosion. Soil Sci Soc Am J 69(5):1463–1471
  • 21. Rodriguez JLG, Suarez MCG (2012) Methodology for estimating the topographic factor LS of RUSLE3D and USPED using GIS. Geomorphology 175–176:98–106
  • 22. Sabzevari T (2010) Development of catchments geomorphological instantaneous unit hydrograph based on surface and subsurface flow response of complex hillslopes. PhD thesis, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • 23. Sabzevari T, Noroozpour S (2014) Effects of hillslope geometry on surface and subsurface flows. Hydrogeol J 22(7):1593–1604
  • 24. Sabzevari T, Talebi A, Ardakanian R, Shamsai A (2010) A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes. Hydrol Earth Syst Sci 14(6):891–900. https://doi.org/10.5194/hess-14-891-2010
  • 25. Sabzevari T, Fattahi MH, Mohammadpour R, Noroozpour S (2013) Prediction of surface and subsurface flow in catchments using the GIUH. J Flood Risk Manag 6(2):135–145
  • 26. Sabzevari T, Noroozpour S, Pishvaei MH (2015) Effects of geometry on runoff time characteristics and time-area histogram of hillslopes. J Hydrol 531:638–648
  • 27. Saghafian B, Julien PY (1995) Time to equilibrium for spatially variable watersheds. J Hydrol 172(1):231–245
  • 28. Sensoy H, Kara O (2014) Slope shape effect on runoff and soil erosion under natural rainfall conditions. iForest Biogeosci For 7(2):110
  • 29. Stefano CD, Ferro V, Porto P, Tusa G (2000) Slope curvature influence on soil erosion and deposition processes. Water Resour Res 36(2):607–617
  • 30. Talebi A, Troch PA, Uijlenhoet R (2008a) A steady-state analytical slope stability model for complex hillslopes. Hydrol Process 22(4):546–553
  • 31. Talebi A, Uijlenhoet R, Troch PA (2008b) A low-dimensional physically-based model of hydrologic control of shallow landsliding on complex hillslopes. Earth Surf Process Landf 33(13):1964–1976
  • 32. Talebi A, Hajiabolghasemi R, Hadian MR, Amanian N (2016) Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes. Hydrol Process 30:1968–1977
  • 33. Troch PA, van Loon AH, Hilberts AGJ (2002) Analytical solutions to a hillslope storage kinematic wave equation for subsurface flow. Adv Water Resour Manag 25(6):637–649
  • 34. Van Remortel RD, Maichle RW, Hickey RJ (2004) Computing the LS factor for the revised universal soil loss equation through array-based slope processing of digital elevation data using a C++ executable. Comput Geosci 30(9):1043–1053
  • 35. Wang B, Zheng F, Guan Y (2016) Improved USLE-K factor prediction: a case study on water erosion areas in China. Int Soil Water Conserv Res 4(3):168–176
  • 36. Williams JR (1975) Sediment routing for agricultural watersheds. Water Resour Bull 11:965–974
  • 37. Wischmeier WH, Smith D (1978) Predicting rainfall erosion losses. Agriculture Handbook No. 537, USDA Science and Education Administration
  • 38. Young RA, Mutchler CK (1969) Effect of slope shape on erosion and runoff. Trans Am Soc Agric Eng 12:231–233
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee8b4e7c-6315-4912-9ea1-bdfa286c7441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.