PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Upper and lower class separating sequences for brownian motion with random argument

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X = X1,X2, . . . be a sequence of random variables, let W be a Brownian motion independent of X and let Zk = W(Xk). A numerical sequence (tk) will be called an upper (lower) class sequence for {Zk} if P(Zk > tk for infinitely many k) = 0 (or 1, respectively). At a first look one might be tempted to believe that a “separating line” (t0k), say, between the upper and lower class sequences for {Zk} is directly related to the corresponding counterpart (s0k) for the process {Xk}. For example, by using the law of the iterated logarithm for the Wiener process a functional relationship t0k = √2s0k log log s0k seems to be natural. If Xk = |W2(k)| for a second Brownian motion W2 then we are dealing with an iterated Brownian motion, and it is known that the multiplicative constant √2 in (0.1) needs to be replaced by 2 · 3−3/4, contradicting this simple argument. We will study this phenomenon from a different angle by letting {Xk} be an i.i.d. sequence. It turns out that the relationship between the separating sequences (s0k) and (t0k) in the above sense depends in an interesting way on the extreme value behavior of {Xk}.
Rocznik
Strony
183--202
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
autor
  • Département de Mathématique, Université Libre de Bruxelles, CP 210, Bd du Triomphe, 1050 Brussels, Belgium
Bibliografia
  • [1] K. Burdzy, Some path properties of iterated Brownian motion, in: Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab. 33 (1993), pp. 67-87.
  • [2] E. Csáki, M. Csörgő, A. Földes and P. Révész, Brownian local time approximated by a Wiener sheet, Ann. Probab. 17 (1989), pp. 516-537.
  • [3] E. Csáki, M. Csörgő, A. Földes and P. Révész, Global Strassen-type theorems for iterated Brownian motions, Stochastic Process. Appl. 59 (1995), pp. 321-341.
  • [4] W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer. Math. Soc. 54 (1943), pp. 373-402.
  • [5] W. Feller, The law of the iterated logarithm for identically distributed random variables, Ann. of Math. 47 (1946), pp. 631-638.
  • [6] Y. Hu, D. Pierre-Loti-Viaud and Z. Shi, Laws of the iterated logarithm for iterated Wiener processes, J. Theoret. Probab. 8 (1995), pp. 303-319.
  • [7] D. Khoshnevisan and T. M. Lewis, Chung’s law of the iterated logarithm for iterated Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), pp. 349-359.
  • [8] S. Kochen and C. Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964), pp. 248-251.
  • [9] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Ser. in Statist., New York 1983.
  • [10] V.V. Petrov, A generalization of the Borel-Cantelli lemma, Statist. Probab. Lett. 67 (2004), pp. 233-239.
  • [11] F. Spitzer, Principles of Random Walk, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee852f4b-29f7-4616-9f39-6c04550b4982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.