PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of natural radioactivity of salt samples with reduced sodium content

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poles are the leaders in Europe in terms of the amount of salt consumed per day. Table salt is the most frequently used spice and is essential for the proper functioning of the body. However, its excessive consumption may have adverse effects on human health. The Word Health Organization (WHO) informs that the leading cause of premature deaths in the European region of WHO is the cardiovascular disease. This is why medicine is increasingly recommending the use of low-sodium salt, which contains a reduced content of sodium and an increased content of potassium because it is essential for the proper functioning of the brain, cells and for proper work of muscles. There is no information in the literature on the concentration of natural radioactive isotopes present in sodium-reduced salts used as a substitute for table salt. Therefore the aim of this study was establishing the concentration of natural radioactive isotopes in salt samples with low sodium content available in retail sale on the Polish market and widely used in Polish households. In these salt samples analysed was the concentration of natural radioactive isotopes like radium, thorium and potassium with use of Mazar type gamma radiation spectrometer connected with a scintillation probe NaI (Tl). Concentration of 226Ra and 232Th isotopes in the tested salt samples with reduced sodium content amounted to below the background level of determination, and the 40K content was within the limits 3386–5794 Bq∙kg-1. Additionally on the basis of the established concentration of natural radioactive isotopes, the annual loading effective dose was calculated for women and men classified to the group of adults from the point of view radiological protection. The effective dose limit of 1 mSv∙y-1 was not exceeded for any test subject consuming reduced sodium salts.. The obtained results were compared with reported data from other countries available in the literature.
Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
  • Fire University, Warsaw, Poland
  • Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
autor
  • Central Laboratory for Radiological Protection, Warsaw, Poland
  • Fire University, Warsaw, Poland
  • Fire University, Warsaw, Poland
Bibliografia
  • 1. Abdul Sani, S.F., Muhamad Azim, M.K., Marzuki, A.A., Khandaker, M.U., Almugren, K.S., Daar, E., Alkallas, F.H., Bradley, D.A., (2022). Radioactivity and elemental concentrations of natural and commercial salt. Radiation Physics and Chemistry, vol. 190, 109790. doi:10.1016/j.radphyschem.2021.109790
  • 2. Brand, A., Visser, M.E., Schoonees, A., Naude, C.E., (2022). Replacing salt with lowsodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women (Review). Cochrane Database of Systematic Reviews, Issue 8, Art. No. Cd015207.
  • 3. Caridi, F., Messina M., Belvedere, A., D’Agostino, M., Marguccio, S., Settineri, L., Belmusto, G., (2019). Food salt characterization in terms of radioactivity and metals contamination. Applied Sciences, 9, 2882. DOI: 10.3390/app9142882
  • 4. Charles, M., (2001). UNSCEAR Report 2000: sources and effects of ionizing radiation. Journal of Radiological Protection, vol. 21(1), pp. 83–86. doi: 10.1088/0952-4746/21/1/609. PMID: 11281539
  • 5. Czerwińska, D., Czerniawska, A., (2007). Ocena spożycia sodu, z uwzględnieniem soli kuchennej jako jego źródła, w wybranej populacji warszawskiej (Assessment of sodium intake, taking into account table salt as its source, in a selected Warsaw population). Roczniki Państwowego Zakładu Higieny (Annals of the National Institute of Hygiene), vol. 58, no. 1, pp. 205–210. (in Polish)
  • 6. El-Bahi, S.M., (2003). Radioactivity levels of salt for natural sediments in the northwestern desert and local markets in Egypt. Applied Radiation and Isotopes, vol. 58, pp. 143–148. doi: 10.1016/S0969-8043(02)00270-1
  • 7. European Commission, Joint Research Centre, (2019). European Atlas of Natural Radiation. Chapter 7. Luxembourg: Publications Office of the European Union.
  • 8. Hameed, B.S., Rejah, B.K., Muter, S., (2016). Study the concentration of naturally occurring radioactive materials in the samples of rice and salt in Baghdad Governorate. Journal of Al-Nahrain University, vol. 19 (1), pp. 104–109. doi: 10.22401/JNUS.19.1.13
  • 9. Instytut Techniki Budowlanej, (2010). Poradnik Instytutu Techniki Budowlanej nr 455/2010 Badania promieniotwórczości naturalnej wyrobów budowlanych (Handbook No. 455/2010. Testing of natural radioactivity of construction products). Warsaw: ITB. (in Polish)
  • 10. International Atomic Energy Agency, (2002). Natural and inducted radioactivity in food (IAEA-TECDOC-1287). Vienna, Austria: Food and Environmental Protection Section, International Atomic Energy Agency.
  • 11. International Commission on Radiological Protection, (1996). ICRP Publication 72. Age–dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficients., Oxford, UK: Pergamon Press.
  • 12. Jaworska, J., Siepak, M., (2018). Polish rock salts vs Himalayan salts – comparative analysis of selected components of table salts. Przegląd Solny / Salt Review, vol. 14, pp. 95–104.
  • 13. Kurek, K., Isajenko, K., Piotrowska, B., Łukaszek-Chmielewska, A., Lipiński, P., (2023). Impact of legislative change on the classification of raw materials and building materials in terms of natural radioactivity. Zeszyty Naukowe SGSP, No. 88 (1), pp. 211–231. doi: 10.5604/01.3001.0054.1459
  • 14. Lewicka, S., Piotrowska, B., Łukaszek-Chmielewska, A., Drzymała, T., (2022). Assessment of natural radioactivity in cements used as building materials in Poland. International Journal of Environmental Research and Public Health, 19, 11695. doi: 10.3390/ijerph191811695
  • 15. Meneton, P., Jeunemaitre, X., de Wardener, H.E. et al., (2005). Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiological Reviews, vol. 85, no. 2, pp. 679–715. doi:10.1152/physrev.00056.2003
  • 16. Shaltout, A.A., Sameh, I.A., Abayazeed, S.D., El-Taher, A., Abd-Elkader, O.H., (2017). Quantitative elemental analysis and natural radioactivity levels of mud and salt collected from the Dead Sea, Jordan. Microchemical Journal, vol. 133, pp. 352–357. doi: 10.1016/j.microc.2017.03.055
  • 17. Stolarz-Skrzypek, K., Kawecka-Jaszcz, K., (2009). Ograniczenie spożycia soli kuchennej jako metoda prewencji nadciśnienia tętniczego (Limiting the consumption of table salt as a method of preventing hypertension, Progress in Medicine). Postępy Nauk Medycznych, vol. 1, pp. 34–38. (in Polish)
  • 18. Surma, S., Romańczyk, M., Bańkowski, E., (2020). The role of limiting sodium intake in the diet — from theory to practice. Folia Cardiologica, vol. 15, no. 3, pp. 227–235.
  • 19. Surma, S., Romańczyk, M., Szyndler, A., Narkiewicz, K., (2021). Sól a nadciśnienie tętnicze — od epidemiologii przez patofizjologię do istotnego problemu cywilizacyjnego (Salt and hypertension – from epidemiology through pathophysiology to a significant civilization problem, Arterial Hypertension). Nadciśnienie Tętnicze w Praktyce, vol. 7, no. 1, pp. 19–27. (in Polish)
  • 20. Surma, S., Szyndler, A., Narkiewicz, K., (2020). Salt and arterial hypertension — epidemiological, pathophysiological and preventive aspects. Arterial Hypertension, vol. 24, no. 4, pp. 148–158.
  • 21. Tahir, S.N.A., Alaamer, A.S., (2008). Determination of natural radioactivity in rock salt and radiation doses due to its ingestion. Journal of Radiological Protection, 28, pp. 233–6. doi: 10.1088/0952-4746/28/2/N01
  • 22. World Health Organization, (2024). Action on salt and hypertension: reducing cardiovascular disease burden in the WHO European Region. WHO Regional Office for Europe. ISBN: 978-92-890-6081-3 (PDF).
  • 23. World Health Organization, (2012). Guideline: Potassium Intake for Adults and Children. Geneva, Switzerland: World Health Organization (WHO).
  • 24. World Health Organization, (2012). Guideline: Sodium Intake for Adults and Children. Geneva, Switzerland: World Health Organization (WHO).
  • 25. Zeynep, Y., Tufan, M.C., (2017). Determination of radioactivity levels of salt minerals on the market. Canadian Journal of Physics, 96 (7), pp. 784–785. doi: 10.1139/cjp-2017-0775
  • 26. Zhang, P., Fan, F., Li, Y., Li, Y., Luo, R., Li, L., Zhang, G., Wang, L., Jiao, X., He, F.J., (2023). Awareness and use of low-sodium salt substitutes and its impact on 24-h urinary sodium and potassium excretion in China-A Cross-Sectional Study. Nutrients, no. 15, 3000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee84ad04-7e2c-4342-b912-9a50a879812a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.