PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Spatial variability of long-term trends in significant wave height over the Gulf of Gdańsk using System Identification techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The significant wave height field over the Gulf of Gdańsk in the Baltic Sea is simulated back to the late 19th century using selected data-driven System Identification techniques (Takagi-Sugeno-Kang neuro-fuzzy system and non-linear optimization methods) and the NOAA/OAR/ESRL PSD Reanalysis 2 wind fields. Spatial variability of trends in the simulated dataset is briefly presented to show a cumulative “storminess” increase in the open, eastern part of the Gulf of Gdańsk and a decrease in the sheltered, western part of the Gulf.
Rocznik
Strony
190--201
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Department of Physical Oceanography, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Department of Physical Oceanography, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
  • [1]. Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A. & Jeng, D.-S. (2011). Cross-shore sediment transport estimation using fuzzy inference in the swash zone. Journ. Franklin Inst. 348(8): 2005-2025.
  • [2]. Breugem, W.A. & Holthuijsen, L.H. (2007). Generalised wave growth from Lake George. J. Waterw. Port Coast. Ocean Eng. 133(3): 173-182.
  • [3]. Bricheno, L.M., Soret, A., Wolf, J., Jorba, O. & Baldasano, J.M. (2013). Effect of high-resolution meteorological forcing on nearshore wave and current model performance. J. Atmospheric Ocean. Technol. 30: 1021-1037.
  • [4]. Camus, P., Fernando, J., Mendez, F.J. & Medina, R. (2011). A hybrid efficient method to downscale wave climate to coastal areas. Coast Eng. 58(9): 851-862.
  • [5]. Cañellas, B., Balle, S., Tintoré, J. & Orfila, A. (2010). Wave height prediction in the Western Mediterranean using genetic algorithms. Ocean Eng. 37(8-9): 742-748.
  • [6]. Cerkowniak, G.R., Ostrowski, R. & Szmytkiewicz, P. (2015). Climate change related increase of storminess near Hel Peninsula, Gulf of Gdańsk, Poland. J. Water Clim. Change 6(2): 300-312.
  • [7]. Chaudhuri, S. & Middey, A. (2011). Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstorms. Meteorol. Atmos. Phys. 114: 139-149.
  • [8]. Cieślikiewicz, W. & Herman, A. (2002). Wave and current modelling over the Baltic Sea and the Gdańsk Bay. In Proc. 28th Int. Coast. Eng. Conf. ASCE, 7-12 July 2002, (pp. 176-187), Cardiff, ASCE.
  • [9]. Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44-year hindcast of wind wave ff elds over the Baltic Sea. Coast. Eng. 55: 849-905.
  • [10]. Compo, G., Whitaker, J., Sardeshmukh, P., Matsui, N., Allan, R. et al. (2011). The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137: 1-28.
  • [11]. Duan, W.Y., Han, Y., Huang, L.M., Zhao, B.B. & Wang, M.H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng. 124: 54-73.
  • [12]. Etemad-Shahidi, A. & Mahjoobi, J. (2009). Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36(15-16): 1175-1181.
  • [13]. Herman, A., Kaiser, R. & Niemayer, H.D. (2009). Wind-wave variability in shallow tidal sea - Spectral modelling combined with neural network methods. Coastal Eng. 56: 759-772.
  • [14]. Herman-Iżycki, L., Jakubiak, B., Nowiński, K. & Niezgódka, B. (2002). UMPL-the Numerical Weather Prediction System for Operational Applications. In B. Jakubiak (Ed.), Research works based on the ICMs UMPL numerical weather prediction system results (pp. 14-27). Warsaw: Publ. ICM.
  • [15]. Hünicke, B., Zorita, Z., Soomere, T., Madsen, K.S., Johansson, M. et al. (2015). Recent Change - Sea Level and Wind Waves. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin (pp. 155-185). Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing.
  • [16]. Jang, R.J.-S. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(3): 665-685.
  • [17]. Jang, R. J.-S. & Sun, C.-T. (1993). Functional equivalence between Radial Basis Functions and Fuzzy Inference Systems. IEEE Trans. on Neural Networks. 4(1): 156-159.
  • [18]. Kelpšaitė, L. Dailidiene, I. & Soomere, T. (2011). Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993-2008. Boreal Environ. Res. 16(A): 220-232.
  • [19]. Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. et al. (1994). Dynamics and modelling of ocean waves. Cambridge: Cambridge University Press.
  • [20]. Krishna Kumar, N., Savitha, R. & Al Mamun, A. (2017). Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 129: 605-612.
  • [21]. Ljung, L. (1987). System identification: Theory for user. Englewood Cliffs, USA: Pretince-Hall.
  • [22]. Londhe, S.S., Dixit, P.R., Balakrishnan Nair, T.M., Sirisha, P. & Jain, R. (2016). A Coupled Numerical and Artificial Neural Network Model for Improving Location Specific Wave Forecast. Appl. Ocean Res. 59: 483-491.
  • [23]. Mahjoobi, L., Etemad-Shahidi, A. & Kazeminezhad, M.H. (2008). Hindcasting wave parameters using different soft computing methods. Appl. Ocean Res. 30: 28-36.
  • [24]. Mahjoobi, J. & Mosabbeb, E.A. (2009). Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5): 339-347.
  • [25]. Massel, S.R. (1996). Ocean surface waves: their physics and prediction. Singapore: World Scientific Publishing.
  • [26]. Malekmohamadi, I., Bazargan-Lari, M.R., Kerachian, R., Nikoo, M.R. & Fallahnia, M. (2011). Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean. Eng. 38: 487-497.
  • [27]. Özger, M. (2010). Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 37: 1443-1451.
  • [28]. Räämet, A., Suursaar, Ü., Kullas, T. & Soomere, T. (2009). Reconsidering uncertainties of wave conditions in the coastal areas of the Northern Baltic Sea. J. Coast. Res. 56: 257-261.
  • [29]. Reikard, G. & Rogers, E.W. (2011). Forecasting ocean waves: Comparing a physics-based model with statistical models. Coastal Eng. 58: 409-416.
  • [30]. Reistad, M., Breivik, Ø., Haakestad, H., Aarnes, O.J., Furenik, B.R. et al. (2011). A high resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. Journ. Geophys. Res. 116: C05019.
  • [31]. Ris, R.C, Holthuijsen, L.H. & Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journ. Geophys. Res. 104(C4): 7667-7681.
  • [32]. Różyński, G. (2010). Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng. 37: 186-199.
  • [33]. Soomere, T. (2008). Extreme and decadal variations of the northern Baltic Sea wave conditions. In E. Pelinovsky & C. Kharif (Eds.), Extreme Ocean Waves (pp. 139-157). Amsterdam, Springer Netherlands.
  • [34]. Soomere, T. & Räämet, A. (2011a). Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7: 141-150.
  • [35]. Soomere, T. & Räämet, A. (2011b). Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53: 335-371.
  • [36]. Soomere, T., Weisse, R. & Behrens, A. (2012). Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8: 287-300.
  • [37]. Swail, V.R. & Cox, A.T. (2000). On the use of NCEP-NCAR Reanalysis surface marine wind fields for a long term North Atlantic wave hindcasts. J. Atmospheric Ocean. Technol. 17: 532-545.
  • [38]. Sylaios, G., Bouchette, F., Tsihrintzis, V.A. & Denamiel, C. (2009). A fuzzy inference system for wind-wave modelling. Ocean Eng. 36(17-18 ): 1358-1365.
  • [39]. Takagi, R. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15: 116-132.
  • [40]. The WAMDI Group: Hasselmann, S., Hasslemann, K., Bauer, E., Janssen, P.A.E.M., Komen, J.G. et al. (1988). The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18: 1775-1810.
  • [41]. The WISE Group: Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M. et al. (2007). Wave modelling-The state of art. Progr. Oceanogr. 75: 603-674.
  • [42]. Tolman, H.L. (2002): Testing of WAVEWATCH III Version 2.22 in NCEP as NWW3 Ocean Wave Model Suite. NOAA/NWS/NCEP/OMB Technical Note Nr. 214.
  • [43]. USACE. (2008). Coast Engineering Manual. USA Corps of Engineers.
  • [44]. Zaitseva-Pärnaste, I., Soomere, T. & Tribštok, O. (2011). Spatial variations in wave climate change in the eastern part of the Baltic Sea. Journ. Coastal Res. 64: 195-199.
  • [45]. Zanaganeh, M., Mousavi, S.J. & Etemad-Shahidi, A.F. (2009). A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intel. 22: 1194-1202.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee7fba96-0134-4fb7-9b65-331ab77230b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.